

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue

2022-2023

College/ Institute	Erbil Technical Engineering College			
Department	Technical Mechanical and Energy Engineering			
Module Name	Engineering Mechanics- Dynamics			
Module Code	EMD303			
Degree	Technical Diploma Bachler			
	High Diploma	Master PhD		
Semester	Third			
Qualification	PhD			
Scientific Title	Lecturer			
ECTS (Credits)	5			
Module type	Prerequisite Core Assist.			
Weekly hours	3 hrs			
Weekly hours (Theory)	(3) hr Class	(40)Total hrs Workload		
Weekly hours (Practical)	(0)hr Class	(0)Total hrs Workload		
Number of Weeks	12 weeks			
Lecturer (Theory)	Dr. Zhwan Dilshad			
E-Mail & Mobile NO.	zhwan.ibrahim@epu.edu.iq			
Lecturer (Practical)	NA			
E-Mail & Mobile NO.	NA			
Websites	NA			

Course Book

Course Description	This course teaches students how to apply Newtonian physics to analyse relatively simple physical mechanisms, with some emphasis on commonly encountered engineering applications. It deals with dynamics of particles and rigid bodies, applications of free-body diagrams, Newton's law, mechanical vibrations, the impulse-momentum method and the work-energy principle to solve dynamic problems in mechanical systems. It is very important to emphasize that this is a problem-oriented class and the only way that the material can be mastered is with practice solving problems in addition to homework problems. Prerequisites: Engineering Mechanics-Statics
Course objectives	 At the end of this course the student will be able to: Introduce students to the concepts of dynamics. The students are expected to develop working skills in the dynamic analysis of both particles and rigid bodies. To introduce the physical principles to the analysis of particle and rigid-body motion problems. Master the basics of dynamics, including free body diagrams and kinematics, and broadens those basics through the extensive use of vector math to 3-D problems. Learn the mathematical formulations of dynamics problems. Obtain an understanding of Newtons Laws of Motion, and the ability to apply energy and momentum methods to particles and rigid bodies in planar motion.
Student's obligation	 Homework will be assigned periodically. Students are responsible to do homework on their own. There will be several quizzes during the academic year, not

	necessarily announced. The quiz contains the materials covered						
	in previous lectures, homework or to be covered that day.						
	4. Any quiz or test missed without a supported documented and						
	excused absence will represent a zero.						
	5 Attendance and participation in the lecture are mandatory and						
	yill be considered in the grading						
	Will be considered in the grading.						
	Students should bring calculators, rulers, pen and pencils to be used during the lectures.						
Required Learning Materials	Data show and white board are used throughout the lectures and the						
materials	lecture notes will be uploaded to the Moodle platform before the lecture day.						
		Task	Weight (Marks)	Due Week	Relevant Learning Outcome		
	Paper Review		(1744146)	VV COR			
		Homework	14%				
Evaluation	As	Class Activity					
	signments	Report	24%				
		Seminar					
		Essay					
		Project					
	Quiz		6%				
	Lab.						
	Midterm Exam		16%				
	Final Exam		40%				
	Total		100%				
	Students who successfully complete the course should demonstrate the						
	following outcomes by tests and homework:						
Specific learning	1. A knowledge of kinematic and kinetic analyses for particles and						
outcome:	systems of particles.						
	2. A knowledge of momentum and energy methods for particles and						
	systems of particles.						
	3. A knowledge of kinematic and kinetic analyses for rigid bodies.						

	4. A knowledge of momentum and energy methods for rigid bodies.					
	A basic understanding of vibrations in one degree of freedom systems					
	1. Course notes					
Course References:	2. Engineering Mechanics/Dynamics, R.C. HIBBELER, (2007)					
	11 th edition.					
	3. Vector Mechanics for En	gineers Dynamics,	Ferdinand P. Beer,			
	E. Russell Johnston (2004) 7 th edition.					
Course topics (Theory)		Week	Learning Outcome			
Introduction to Engineering Dynamics, General Principles		1				
Kinematics of a Particles, Rectilinear Motion of particles		2				
Rectilinear Kinematics: Erratic Motion		3				
General Curvilinear Motion, Curvilinear Motion: Rectangular		4				
Components						
Motion of a Projectile		5				
Curvilinear Motion: Normal and Tangential Components		6				
Curvilinear Motion: Cylindrical Components (Radial and		7				
Transverse Components), Cy						
Absolute Dependent Motion Analysis of Two Particles		8				
Kinetics of a particle (Force and acceleration), Newton's Laws of		9				
Motion, The Equation of Mot	tion					
Equation of Motion for a System of Particles		10				
Equation of Motion: Rectangular Components		11				
Equation of Motion: Normal and Tangential Components		12				
Equation of Motion: Cylindrical Coordinates		13				
Power and Efficiency and Conservative Forces and Potential		14				
Energy, Conservation of Energy						
Practical Topics		Week	Learning			

Directorate of Quality Assurance and Accreditation

بەر يوەبەر ايەتى دڭنيايى جۆرى و متمانەبەخشىن

Questions Example Design

 Q^{1} : The escalator steps move with a constant speed of 0.6 m/s. If the steps are 125 mm high and 250 mm in length, determine the power of a motor needed to lift an average mass of 150 kg per step. There are 32 steps. (25 marks)

 Q^2 : The boy at A attempts to throw a ball over the roof of a barn with an initial speed of $v_A = 15 \ m/s$). Determine the angle θ_A at which the ball must be thrown so that it reaches its maximum height at C. Also, find the distance d where the boy should stand to make the throw. (25 marks)

*Q*³: The tractor is used to lift 150 *kg* load *B* with 24 *m* long rope, boom, and pulley system. If the tractor travels to the right with an acceleration of $a = 3 m/s^2$ and has a velocity of v = 4 m/s at the instant $S_A = 5 m$, determine the tension in the rope at this instant. When $S_A = 0$, $S_B = 0$. (20 marks)

 Q^4 : From experiments, the time variation of the vertical force on a runner's foot as he strikes and pushes off the ground is shown in the graph. These results are reported for a 1 *lb static* load, i.e., in terms of unit weight. If a runner has weight 175 *lb*, determine the approximate vertical impulse he exerts on the ground if the impulse occurs in 210 *ms*. (20 marks)

Extra notes:

External Evaluator

I confirm that this coursebook is satisfy and covers all the requirement of the Engineering Dynamics Module.

Advance

Dr. Dlair O. Ramadan