

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Control Engineering) Catalogue

2022-2023

College/ Institute	Erbil Technical engineering college				
Department	Technical Mechanical and Energy Eng. Dept.				
Module Name	Control Engineering				
Module Code	COE805				
Degree	Technical Diploma Bachler High				
	Diploma Master PhD				
Semester	8				
Qualification	PhD				
Scientific Title	Assistant Professor				
ECTS (Credits)	5				
Module type	Prerequisite Core Assist.				
Weekly hours	4				
Weekly hours	(2)hr Class ()Total hrs Workload				
(Theory)					
Weekly hours	(2)hr Class ()Total hrs Workload				
(Practical)					
Number of Weeks	20				
Lecturer (Theory)	Assist. Prof. Dr. Younis Khalid				
E-Mail & Mobile	younis.khdir@epu.edu.iq - 07504790685				
NO.					
Lecturer	Assist. Prof. Dr. Younis Khalid				
(Practical)					

E-Mail & Mobile	
NO.	
Websites	https://academicstaff.epu.edu.iq/faculty/younis.khdir

Course Book

	Today's mechatronics, manufacturing, and heavy industries face				
	increased demand, better quality, less environmental impact, and				
	most importantly, much lower competitive cost. It is very difficult to				
	achieve these conflicting requirements unless the systems and				
	subsystems embedded in different applications and architectures				
	are constantly monitored and intelligently controlled. This module				
	allows the learner to develop their understanding of what is				
	involved in designing, operating and monitoring such unmanned				
	systems while adhering to strict and optimal performance				
	specifications. Representative cases of these systems and				
	subsystems range from smart sensors and actuators, smart home				
	applications, biomedical applications, automotive technology,				
	intelligent materials handling, advanced manufacturing and				
Course Description	automation, manufacturing, HVAC systems, reverse osmosis, power				
	plants and water treatment facilities. space technology, marir				
	applications, the list is endless. Control engineering is important to				
	achieve the next goal of industry - Industry.				
	Control systems angingering is primarily concerned with the study				
	of these interdisciplinary fields through mathematical modeling				
	of these interdisciplinary fields through mathematical modeling				
	appropriate control command system simulation software				
	appropriate control-command system simulation software				
	develop integrated devices and intelligent controllers that will force				
	those systems to act according to the most appropriate				
	methodology. The fact that the cost of microprocessors and				
	methodology. The fact that the cost of microprocessors and				
	microcontrollers has dropped dramatically over the years has made				

	them more attractive for electronically controlled controllers. This fact highlights the need for mechanical and manufacturing engineering learners to become familiar with these technologies and learn how to integrate microcontrollers into today's interdisciplinary fields. The objective of this unit is to introduce the learner to the				
Course objectives	integration of control systems in the interdisciplinary fields of dynamic engineering such as mechanics, electricity, thermal, flows, environment, biomedical, energy, etc., who seek to acquire their systems and subsystems The systems organize themselves automatically.				
Student's	Class	attendance ea	ch student sh	ould practically partie	cinato in oach
obligation	lecturer.				
Required Learning Materials	Computer program: MATLAB with Simulink, Arduino				
	Task				
		Task	Weight (Marks)	Due Week	Relevant Learning Outcome
	P	Task aper Review	Weight (Marks)	Due Week	Relevant Learning Outcome
	P	Task aper Review Homework	Weight (Marks) 5%	Due Week 4,6	Relevant Learning Outcome
	P. Ass	Task aper Review Homework Class Activity	Weight (Marks) 5% 2%	Due Week 4,6	Relevant Learning Outcome
	P Assign	Task aper Review Homework Class Activity Report	Weight (Marks) 5% 2% 5%	Due Week 4,6	Relevant Learning Outcome
Evaluation	P Assignmen	Task aper Review Homework Class Activity Report Seminar	Weight (Marks) 5% 2% 5% 5%	Due Week 4,6 8	Relevant Learning Outcome
Evaluation	P Assignments	Task aper Review Homework Class Activity Report Seminar Essay	Weight (Marks) 5% 2% 5% 5%	Due Week 4,6 8	Relevant Learning Outcome
Evaluation	P Assignments	Task aper Review Homework Class Activity Report Seminar Essay Project	Weight (Marks) 5% 2% 5% 5%	Due Week 4,6 8 5.7	Relevant Learning Outcome
Evaluation	P Assignments Quiz	Task aper Review Homework Class Activity Report Seminar Essay Project z	Weight (Marks) 5% 2% 5% 5% 5% 8%	Due Week 4,6 8 5,7 3,5,7,9,11,13	Relevant Learning Outcome
Evaluation	P Assignments Quiz Lab	Task aper Review Homework Class Activity Report Seminar Essay Project z	Weight (Marks) 5% 2% 5% 5% 5% 8% 10% 35%	Due Week 4,6 8 5,7 3,5,7,9,11,13 10	Relevant Learning Outcome
Evaluation	P. Assignments Quiz Lab Mid Fina	Task aper Review Homework Class Activity Report Seminar Essay Project z term Exam dl Exam	Weight (Marks) 5% 2% 5% 5% 5% 8% 10% 35% 40%	Due Week 4,6 4,6 8 5,7 3,5,7,9,11,13 10 16	Relevant Learning Outcome
Evaluation	P. Assignments Quiz Lab Mid Fina	Task aper Review Homework Class Activity Report Seminar Essay Project z term Exam al Exam	Weight (Marks) 5% 2% 5% 5% 5% 8% 10% 35% 40% 100%	Due Week 4,6 4,6 8 5,7 3,5,7,9,11,13 10 16 16	Relevant Learning Outcome
Evaluation Specific learning	P. Assignments Quiz Lab Mid Fina Tota	Task aper Review Homework Class Activity Report Seminar Essay Project z term Exam al Exam al course will deve	Weight (Marks) 5% 2% 5% 5% 5% 8% 10% 35% 40% 100% 2000 your Tech	Due Week 4,6 4,6 8 5,7 3,5,7,9,11,13 10 16 16 16 16 16 16 16 16 16	Relevant Learning Outcome

	1. Review classical and modern control theories as applied in				
	engineering systems				
	2. Examine mathematical models for control systems and				
	subsystems				
	3. Study the stability of control systems				
	4. Analyses the use of microcontrollers in closed-loop control				
	systems.				
	Key references:				
Course	1. Control Systems Engineering, Norman Nise.				
References:	2. Analysis and Design of Control Systems using Mat	tlab Rao V.	Dukkipati.		
	3. Modern Control Engineering. Katsuhiko Ogata.				
	4. Control Systems engineering, I. J. NAGARATH M.	GOPAL.			
	5. Control Systems Engineering, S. K. Bhattacharva.				
	· · · · · · · · · · · · · · · · · · ·				
Course tonics (Th	eorv)	Week	Learning		
course topics (11		week	Outcome		
Introduction and defin	nitions	1			
- Basic definitions a	bout the concepts of control				
Mechanical system an	d Transfer Function				
- Definition of trans	ter function				
- Deriving the transf	- Deriving the transfer function for three basic parts of mechanical				
system					
Series and parallel col	finections in mechanical systems	Z			
- Transfer function for mechanical system while connected it at series					
- Examples					
- Examples Torsional system					
- Deriving the transf	er function for three basic parts of torsional				
System	System				
Electrical system, series and parallel connections					
- Deriving the transfer function for three basic parts of electrical					
system connected in parallel and series					
Thermal and fluid sys	tems	3			
- Deriving the transf	er function for thermal and fluid systems				
- Examples	- Examples				
Hydraulic system					
- The basic concept	- The basic concept of working the hydraulic system				
- Deriving the transfer function of the system					
Hydraulic servomotor system					
- Leverage system and deriving the transfer function for three cases					
OI IIXING Method of connection with hydraulic system					
- Method of connection with hydraulic system					

Pneumatic system	4	
- The basic concept of working the pneumatic system		
- Deriving the transfer function of the system		
Block diagram		
- The principles of block diagram		
- The basic nine rules for reduction the block diagram		
Block diagram reduction		
- Method of reduction of block diagrams of multi-input and output		
Types of control and Laplace transformations	5	
- Types of control methods and basic functions of Laplace		
transformation		
Test signals		
- The different types of test signals		
Response of first order system		
- Method of computing the response of first order system		
- Examples		
Response of second order system	6	
- Method of computing the response of second order system		
- Examples		
Response specifications		
- The specification of response which determine the stability of		
system		
Steady state error		
- Computing the steady state error by using Toyler method and		
normal method and compare between them		
Response improvement	7	
- The methods of response improvement		
- Examples		
System stability		
- The concept of system stability and its effect on control process		
Routh criterion		
- The Routh criterion for computing the stability of system		
Applications of Routh criterion	8	
- Some applications about Routh criterion		
- Examples		
Root-locus method		
- The root-locus method for computing system stability		
Rules of Root-locus method		
- Basic rules of root-locus method		
- Examples		
Polar-plot diagrams	9	
- The polar plot for computing system stability		
Principles of polar-plot diagrams	10	
- The method of polar plot diagram for computing the gain		

- Examples		
Logarithmic Scales and Bode Plots	11	
- Basic principles of logarithmic scale and Bode plots		
Construction of Bode Plots for Continuous-Time Systems	12	
- The method of construction of Bode plots		
- Examples		
Analysis of control system in state space	13	
- Principles and basic assumptions for state space method		
State space representation of transfer function of system	14	
- The state space representation		
- Examples		
Solving the time invariant state equations	15	
- The solution method of time invariant state equations		
Practical Topics		Learning
	Week	Outcome
1- Flow / level control demonstration	1	
2- Temperature control demonstration	2	
3- Pressure control demonstration	3	
4- Pump and valves and fitting test stand	4	
5- PLC Application: Mixing Process	5	
6- Experimental determination of dynamic properties and closed-	6	
loop response of a two-tank fluid level control system using valve control.		
7- Design of PID controller for hydraulic positioner system based	7	
on experimental frequency response data		
9. Time response using MATLAD	Q	
8- Time response using MATLAB	0	
9- Stability and feedback control of linear system	9	
10- Arduino introduction of control system	10	
11- Arduino dynamic control system	11	

Questions Example Design Q1:

For the rotational system shown in Figure 1 find the transfer function, $G(s) = \theta_L(s)/T(s)$.

Solving for $\theta_4(s)$,

$$\theta_4(s) = \frac{\begin{vmatrix} s(s+2) & -2s & 3T(s) \\ -2s & (2s+3) & 0 \\ 0 & -3 & 0 \\ \hline s(s+2) & -2s & 0 \\ -2s & (2s+3) & -3 \\ 0 & -3 & (s+3) \end{vmatrix}} = \frac{18T(s)}{s(2s^2+9s+6)}$$

But, $\theta_L(s) = 5\theta_4(s)$. Hence,

$$\frac{\theta_4(s)}{T(s)} = \frac{90}{s(2s^2 + 9s + 6)}$$

Q2: Solve for x(t) in the system shown in Figure 2 if f(t) is a unit step.

Solution:

The equation of motion is: $(Ms^2+f_Vs+K_s)X(s) = F(s)$. Hence, $\frac{X(s)}{F(s)} = \frac{1}{Ms^2+f_Vs+K_s} = \frac{1}{s^2+s+5}$. The step response is now evaluated: $X(s) = \frac{1}{s(s^2+s+5)} = \frac{1/5}{s} - \frac{\frac{1}{5}s + \frac{1}{5}}{(s+\frac{1}{2})^2 + \frac{19}{4}} =$

$$\frac{\frac{1}{5}(s+\frac{1}{2}) + \frac{1}{5\sqrt{19}}\frac{\sqrt{19}}{2}}{(s+\frac{1}{2})^2 + \frac{19}{4}}$$

Taking the inverse Laplace transform, $x(t) = \frac{1}{5} - \frac{1}{5} e^{-0.5t} \left(\cos \frac{\sqrt{19}}{2} t + \frac{1}{\sqrt{19}} \sin \frac{\sqrt{19}}{2} t \right)$ = $\frac{1}{5} \left[1 - 2\sqrt{\frac{5}{19}} e^{-0.5t} \cos \left(\frac{\sqrt{19}}{2} t - 12.92^{\circ} \right) \right].$

بەر يو دېمرايەتى دڭنيايى جۆرى و متمانەبەخشىن Directorate of Quality Assurance and Accreditation

Extra notes:

External Evaluator

This Course Syllabus is well-structured, it was covered important topics on Control engineering science.

Dr. AbdurRahman B. Shakir

18-01-2023