

(Solid Mechanics) Course Catalogue 2022-2023

College	Erbil Technology College					
Department	Construction and Materials Technology					
	Engineering					
Module Name	Solid Mechanics					
Module Code	SOM235					
Semester	3					
Credit	5					
Module type	Theoretical & Tutorial					
Weekly hours	6					
Weekly hours (Theory)	(3)hr Class (135) hr Workload					
Weekly hours (Practical)	()hr Class () hr Workload					
Lecturer (Theory)	Yassin Ali Ibrahim					
E-Mail	Yassin.ibrahim@epu.edu.iq					
Lecturer (Practical)	Yassin Ali Ibrahim					
Email	Yassin.ibrahim@epu.edu.iq					

Course Book

Course overview:

This basic course in Solid Mechanics aims to provide an introduction to analysis of stress and strain in solid materials under elastic deformation. Focus is on investigating a number of fundamental structural elements such as bars, shafts and beams under different loading conditions. Within the analysis, both one-dimensional and three-dimensional methods are employed. While plastic deformation is not being covered, realistic dimensioning problems in order to avoid it is included.

Course objective:

On completion of this unit, students should be able to:

- 1. Apply appropriate methods to calculate internal stresses and strains in basic structures
- 2. Demonstrate a basic understanding of the bending behaviour of compression and tensions members
- 3. Demonstrate the ability to analyse a beam structure and understand its internal behaviour under bending.

Student's obligation

- Students should be informed that the method of teaching the material is evaluated daily.
- After each lecture and tutorial work, homework must be prepared.
- At the end of each theoretical lecture, a tutorial should be followed.
- There will be an essay and an assignment during the semester.

Forms of teaching

During the academic year, Data Show is used for full detailing, besides that a white board is used to solute the examples, and a software copy of the lecture will be handed, finally, a home work for the coming week will be announced.

Assessment scheme

ECTS Workload Calculation Form										
Activity	S	Description		Activity	No.	T.F. Range		Specefic	Time	Workload
Activity	3	Descri	ption	Type	140.	Min	Max	T. F.	Factor	Workload
Course		- Theory	In class	f	10				<u>2</u>	20
	1		Online	f	2				<u>2</u>	4
	2	Preparation (1-2) * Theory Hr.		h	12	2	4	4	4	48
	3	Practical		f	12					
	4	Preparation (1-1.5) * Practical Hr.		h	12					
	5	Tutorial		f	12	1	1		<u>1</u>	12
	6	Preparation (0.5-1.5) * Tutorial Hr.		h	12	0.5	1.5		0.5	6
	7	Scientific/Field Trips		f						

Site Visists and Lab	8	Practical/La	ab Reports	h						
Experiments	9	Homework		h	3	1	4	2	2	6
	10	Report		h	2	1	4	4	4	8
Assig	11	Seminar		h						
Assignment	12	Paper		h						
7	13	Essay		h	1	1	6	5	5	5
	14	Project/Poster		h						
	15	Qı	ıiz	h	5	1	2		1	5
	16		Theory	f	1				<u>1</u>	1
Assessment	17	- Mid Term	Preparation (1.5-3) * Theory Hr.	h	1	3	6		<u>3</u>	3
	18		Practical	f	1					
	19		Preparation (1-2) * Practical Hr.	h	1					
ent	20	Final	Theory	f	1				<u>2</u>	2
	21		Preparation (3-5) * Theory Hr.	h	1	6	10		<u>6</u>	6
	22		Practical	f	1					
	23		Preparation (2-4) * Practical Hr.	h	1					
Face to face hours (f)/12 week		4.4	Face to face hours (f)						39	
Home hours (h)/16 week		6.8	Home hours (h				h)		87	
Total hours/16 week		10.1	Total hours						126	
ECTS (Total hours 126 /				≈ 5				Accept		4.67

Specific learning outcome:

- Explain the one-dimensional as well as three-dimensional concepts of stress and strain to quantify the internal forces and deformation,
- Explain and apply one-dimensional as well as three-dimensional material models including elasticity.
- Interpret and draw symbolic representations of different one-dimensional structures under mechanical loading,
- Determine internal forces and deformations in bars and beams
- Calculate relevant criteria in realistic dimensioning problems to avoid failure by plastic deformation and elastic instability.

- Course Reading List and References:

• Key references:

- Useful references: Solid Mechanics
- Magazines and review (internet): Engineering Magazines

•	Course topics (Theory)	Week	Learning Outcome
	Not applicable		
Practi	ical Topics (If there is any)	Week	Learning Outcome
1.	Introduction: Definition of stress, stress tensor, normal and shear stresses in axially loaded members.	1	
2.	Numerical problems on stress, shear stress in axially loaded members.	2	
	Stress & Strain :- Stress-strain relationship, Hooke's law, Poisson's ratio, shear stress,	3	
	Numerical problems on Stress- strain Hooke's law, Poisson's ratio, shear stress	4	
	Introduction to Tensors	5	
	Members Subjected to Flexural Loads	6	
7.	Shear Force and Bending Moment in Beams	7	
8.	Bending Moment	8	
9.	Shear Force	9	
10.	. Drawing Shear Force	10	
	. Drawing Bending Moment		
	. Beams	11 12	
19. Ex	aminations:	12	
	ubject does not have exam, marks are set weekly based on		
continu	nous assignment, home work, report and project.		
•	Extra notes:		
None			
•	External Evaluator		

Ministry of Higher Education and Scientific research					