زانکۆی پۆلیتەکنیکی ھەولیر ERBIL POLYTECHNIC UNIVERSITY

Module (C	Course Syllabus) Catalogue 022-2023	e	KRG Iraq متی خویندنی بالا و تویژیندودی زانستی
College/ Institute	Erbil Technology College	e	
Department	Department of Automotive Industrial		
	Technology		
Module Name	AC Electrical Circuit		
Module Code	AEC301		
Semester	3		
Credits	6		
Module type	Core		
Weekly hours	4		
Weekly hours (Theory)	(2)hr Class	(86)hr V	Vorkload
Weekly hours (Practical)	(2)hr Class	(64)hr V	Vorkload
Lecturer (Theory)	Truska Khalid M. Salih		
E-Mail	truska.muhamad@epu.edu.iq		
Lecturer (Practical)	Truska Khalid M. Salih		
E-Mail	truska.muhamad@epu.edu.iq		

Course Book		
Course Description	This course is a study of the fundamentals of alternating current (AC) including single phase and three phase circuit analysis techniques. Also is study the most important theories by reasonably brief outline of essential information, definitions, formula, and procedures with solved examples and unsolved ones for homework.	
Course Objectives	 This subject is very important for the second year students of electrical power department to let them identifying the fundamental concepts, the electrical circuits the measurements which are the basic for studying and understanding all other subjects in both levels even in their career. The objective for the two term courses is to teach the students:- The principles which describes the operation of AC circuits, sine wave, and types of connections of A.C. electrical circuits. The most important theories by reasonably brief outline of essential information, definitions ,formula ,procedures with solved examples and unsolved ones for homework. At the end of the course the student will have sufficient knowledge about different measurements and calculations which they need. 	
Student's Obligation	RespectA student has an obligation to exhibit honesty and to respect the ethical standards of the profession in carrying out his/her academic assignments. Without limiting the application of this principle.AttendanceThe student's absence must not exceed 10%. In the event that this percentage is exceeded, the student is considered to have failed in this module.QuestionsAsking questions about unclear material is an important part of the classroom experience. It is not uncommon for students to have similar difficulties, so speaking up will help everyone understand the discussed information. Teachers can also benefit from a student's questions. By finding out what subjects are	

hard to understand, instructors can adjust their lectures to clear up confusing topics. Assignment A student must submit the assignment on moodle app. every week and also write a report about what he/she was studied in the laboratory I6% Mid Term (Theory and practical) 4% Quiz 40% Assignment (report, paper, homework, seminar) 25% final practical 15% final theory After successful completion of the course student will be able to > Explains the basic definitions. > Draws sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Explains capacitance, inductance, and admittance. > Explains capacitance, inductance, and polar form. > Solve serial and parallel ac circuits. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Solve circuit using star-delta transformation. > Explains the assource mere transformation. > Draws power transfermatio		r		
up confusing topics. Assignment A student must submit the assignment on moodle app. every week and also write a report about what he/she was studied in the laboratory Assessment Scheme 16% Mid Term (Theory and practical) 4% Quiz 40% Assignment (report, paper, homework, seminar) 25% final practical 15% final theory After successful completion of the course student will be able to > Explains the basic definitions. > Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Expresses sinusoidal terms as magnitude and phase. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates equivalent impedance. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Writes equation for node analysis. > Solv		hard to understand, instructors can adjust their lectures to clear		
Assignment A student must submit the assignment on moodle app. every week and also write a report about what he/she was studied in the laboratory Assessment Scheme 16% Mid Term (Theory and practical) 4% Quiz 40% Assignment (report, paper, homework, seminar) 25% final practical 15% final theory After successful completion of the course student will be able to > Explains the basic definitions. > Draws sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Expresses sinusoidal terms as magnitude and phase. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates equivalent impedance. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Writes equation for node analysis. > Solve circuit using star-delta transformation. > Explains the zeowarefrequency		up confusing topics.		
A student must submit the assignment on moodle app. every week and also write a report about what he/she was studied in the laboratory Assessment Scheme 16% Mid Term (Theory and practical) 4% Quiz 40% Assignment (report, paper, homework, seminar) 25% final practical 15% final theory After successful completion of the course student will be able to > Explains the basic definitions. > Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Explains capacitance, inductance, and admittance. > Explais capacitance quivalent impedance. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates equivalent impedance. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Writes equation for node analysis. > Solve circuit using star-delta transformation. > Explains maximum power transformation. > Explains maximum power transformation.		Assignment		
Specific Learning Outcome: week and also write a report about what he/she was studied in the laboratory I6% Mid Term (Theory and practical) 4% Quiz 40% Assignment (report, paper, homework, seminar) 25% final practical 15% final theory After successful completion of the course student will be able to > Explains the basic definitions. > Draws sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Defines amplitude, effective, mean, peak to peak value, frequency and periodic signal. > Defines amplitude effective, mean, peak to peak value, frequency and periodic signal. > Defines amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Expresses sinusoidal terms as magnitude and phase. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates equivalent impedance. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Writes equation for node analysis. > Solve circuit using star-delta transformation. > Explains maximum power transformation. > Explains maximum power transformation. > Explains theremany frequency <th></th> <th colspan="3">A student must submit the assignment on moodle app. every</th>		A student must submit the assignment on moodle app. every		
Assessment Scheme 16% Mid Term (Theory and practical) 4% Quiz 40% Assignment (report, paper, homework, seminar) 25% final practical 15% final theory After successful completion of the course student will be able to > Explains the basic definitions. > Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Defines amplitude, effective, mean, peak to peak value, frequency domain. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Explains capacitance, inductance, and admittance. > Expresses sinusoidal terms as magnitude and phase. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates equivalent impedance. > Calculates equivalent impedance. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Writes equation for node analysis. > Solve circuit using star-delta transformation. > Explains maximum power transformation. > Explains maximum power transformation. > Explain the resonant frequency		week and also write a report about what he/she was studied in		
Assessment Scheme16% Mid Term (Theory and practical) 4% Quiz 40% Assignment (report, paper, homework, seminar) 25% final practical 15% final theoryAfter successful completion of the course student will be able to > Explains the basic definitions.Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits.Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal.Demonstrate the phase and amplitude information of RLC in frequency domain.Draws phasor diagrams of RLC circuits.Explains capacitance, inductance, and admittance.Explains capacitance, inductance, and admittance.Defines complex number as rectangular and polar form.Solve serial and parallel ac circuits.Calculates equivalent impedance.Calculates equivalent impedance.Calculates equivalent of node analysis.Solve circuit using star-delta transformation.Explains maximum power transformation.Explains maximum power transformation.Explains maximum power transformation.		the laboratory		
Assessment Scheme 4% Quiz 40% Assignment (report, paper, homework, seminar) 25% final practical 15% final theory After successful completion of the course student will be able to > Explains the basic definitions. > Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Explains capacitance, inductance, and admittance. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates equivalent impedance. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Writes equation for node analysis. > Solve circuit using star-delta transformation. > Explains maximum power transformation.		16% Mid Term (Theory and practical)		
Assessment Scheme 40% Assignment (report, paper, homework, seminar) 25% final practical 15% final theory After successful completion of the course student will be able to > Explains the basic definitions. > Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Explains capacitance, inductance, and phase. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Solve circuit using star-delta transformation. > Explains maximum power transformation. > Explain maximum power transformation.	Assassment Seheme	4% Quiz		
 25% final practical 15% final theory After successful completion of the course student will be able to > Explains the basic definitions. > Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Expresses sinusoidal terms as magnitude and phase. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Solve circuit using star-delta transformation. > Explains maximum power transformation. > Explains maximum power transformation. 	Assessment Scheme	40% Assignment (report, paper, homework, seminar)		
15% final theory After successful completion of the course student will be able to Explains the basic definitions. Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. Demonstrate the phase and amplitude information of RLC in frequency domain. Draws phasor diagrams of RLC circuits. Explains capacitance, inductance, and admittance. Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. Explains the reconant frequency		25% final practical		
 After successful completion of the course student will be able to Explains the basic definitions. Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. Demonstrate the phase and amplitude information of RLC in frequency domain. Draws phasor diagrams of RLC circuits. Explains capacitance, inductance, and admittance. Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains the reconant frequency 		15% final theory		
 > Explains the basic definitions. > Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Expresses sinusoidal terms as magnitude and phase. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates equivalent impedance. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Solve circuit using star-delta transformation. > Explains maximum power transformation. > Explain the resonant frequency 		After successful completion of the course student will be able to		
 Draws sinusoidal waveform and describes sinusoidal and non-sinusoidal alternative circuits. Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. Demonstrate the phase and amplitude information of RLC in frequency domain. Draws phasor diagrams of RLC circuits. Explains capacitance, inductance, and admittance. Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Solve circuit using star-delta transformation. Explains maximum power transformation. Explain the resonant frequency 		Explains the basic definitions.		
 non-sinusoidal alternative circuits. Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. Demonstrate the phase and amplitude information of RLC in frequency domain. Draws phasor diagrams of RLC circuits. Explains capacitance, inductance, and admittance. Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. 		Draws sinusoidal waveform and describes sinusoidal and		
 > Defines amplitude, effective, mean, peak to peak value, frequency, and periodic signal. > Demonstrate the phase and amplitude information of RLC in frequency domain. > Draws phasor diagrams of RLC circuits. > Explains capacitance, inductance, and admittance. > Expresses sinusoidal terms as magnitude and phase. > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates equivalent impedance. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Writes equation for node analysis. > Solve circuit using star-delta transformation. > Explains maximum power transformation. > Explain the resonant frequency 		non-sinusoidal alternative circuits.		
 frequency, and periodic signal. Demonstrate the phase and amplitude information of RLC in frequency domain. Draws phasor diagrams of RLC circuits. Explains capacitance, inductance, and admittance. Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. 		> Defines amplitude, effective, mean, peak to peak value,		
 Demonstrate the phase and amplitude information of RLC in frequency domain. Draws phasor diagrams of RLC circuits. Explains capacitance, inductance, and admittance. Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explain the resonant frequency 		frequency, and periodic signal.		
 RLC in frequency domain. Draws phasor diagrams of RLC circuits. Explains capacitance, inductance, and admittance. Explains capacitance, inductance, and admittance. Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. 		Demonstrate the phase and amplitude information of		
 Draws phasor diagrams of RLC circuits. Explains capacitance, inductance, and admittance. Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explain the resonant frequency. 		RLC in frequency domain.		
 Explains capacitance, inductance, and admittance. Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. 		Draws phasor diagrams of RLC circuits.		
 Expresses sinusoidal terms as magnitude and phase. Defines complex number as rectangular and polar form. Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. 		\succ Explains capacitance, inductance, and admittance.		
 > Defines complex number as rectangular and polar form. > Solve serial and parallel ac circuits. > Calculates equivalent impedance. > Calculates current and voltage for each circuit element and shows them in complex domain. > Draws power triangle and calculates power factor. > Apply solving methods and theorem for ac circuits. > Writes equation for node analysis. > Solve circuit using star-delta transformation. > Explains maximum power transformation. 	\succ Expresses sinusoidal terms as magnitude and phase.			
 Solve serial and parallel ac circuits. Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. Explain the resonant frequency. 		\triangleright Defines complex number as rectangular and polar form.		
 Specific Learning Outcome: Calculates equivalent impedance. Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. Explain the resonant frequency. 		Solve serial and parallel ac circuits.		
 Outcome: Calculates current and voltage for each circuit element and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. Explain the resonant frequency. 	Specific Learning	Calculates equivalent impedance.		
 and shows them in complex domain. Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. Explain the resonant frequency. 	Outcome:	> Calculates current and voltage for each circuit element		
 Draws power triangle and calculates power factor. Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. Explain the resonant frequency. 		and shows them in complex domain.		
 Apply solving methods and theorem for ac circuits. Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. Explain the resonant frequency. 		\triangleright Draws power triangle and calculates power factor.		
 Writes equation for node analysis. Solve circuit using star-delta transformation. Explains maximum power transformation. Explain the resonant frequency. 		> Apply solving methods and theorem for ac circuits.		
 Solve circuit using star-delta transformation. Explains maximum power transformation. Explain the resonant frequency. 		➢ Writes equation for node analysis.		
 Explains maximum power transformation. Explain the resonant frequency. 		Solve circuit using star-delta transformation.		
\succ Explain the resonant frequency		\succ Explains maximum power transformation.		
		\succ Explain the resonant frequency.		
\succ Solve three phase circuits.		\succ Solve three phase circuits.		
\succ Explains how obtain the voltage of three phase.		\succ Explains how obtain the voltage of three phase.		
\succ Explains the star-delta connection.		\succ Explains the star-delta connection.		
\succ Explains the relationship between line and phase		\succ Explains the relationship between line and phase		
concepts.		concepts.		
\succ Calculates current, voltage, and power in three phase		\succ Calculates current, voltage, and power in three phase		
circuits		circuits		

	• MEHTA, R. P. D. I	H. 2012. Basic Ele	ectrical Engineering,
S. Chand Publishing.			
Course References:	• BIRD, J. 2014. Electrical circuit theory and technology.		
	Routledge.		
	• DORF, R. C. 2018.	The Electrical En	gineering
	Handbook-Six Volu	ume Set, CRC pre	SS.
		, 1	
Course Terrie	(Theory)	Week	Learning
Course ropic	s (Theory)	VV EEK	Outcome
AC	Fundamentals	1	
Principle of generating	an alternating voltage		
Cycle, Time period, Frequen	cy, Amplitude, Phase and		
Phase difference, Average v	alue, R.M.S. value, Form		
factor, Peak Factor	and Power Factor		
Vector representation of	alternating quantities,		
addition, subtraction, multipl	lication and division.		
AC Series circuits Waveforms, phasor diagram and		2	
expression of voltage, current and power in pure:			
Resistance, Inductance, Capacitance AC through RL,			
RC, LC, RLC series circuit Resonant frequency and			
Resonance condition in RLC	c series circuit		
AC Parallel Circuits		3	
Resistance and Inductance Parallel Circuits			
Resistance and Capacitance Parallel Circuits			
Capacitance and Inductance Parallel Circuits			
• Resistance, Inductance, and capacitance			
Parallel Circuits			
Power in Single Phase A.C.	Circuit	4	
• Active or Real power	(P)		
• Reactive Power (Q)			
• Apparent Power (S)			
• Power Triangle.			
• Power Factor (PF)			
Homework			
Quiz		5	
Review and Solving Examples about			
Lectures(2,3,and 4)			
Resonance Circuits		6	
A.C. Resonance Series Circuit			
• A.C. Resonance Parallel Circuit			

Superposition Theory in A.C. Circuits	7	
Poly Phase Circuits	8	
• Principle of Generation in Three Phase		
Alternating Voltage.		
• Line and Phase voltage, Line and Phase		
Current.		
Three-Phase Star Connection.		
Three Phase Delta Connection		
Convert Star Connection to Delta Connection and	9	
Vice Versa		
Power in Three Phase A.C. Circuits	10	
• Active or Real power (P)		
• Reactive Power (Q)		
• Apparent Power (S)		
• Power Triangle.		
• Power Factor (PF)		
• Homework		
Quiz	11	
Review and Solving Examples Lectures (8,9, and 10)		
Methods of Calculating the Power for 3-Phase Loads	12	
by Using the Wattmeter, the Connection for		
Calculating Active Power, Reactive Power and		
Apparent power.		
Solving examples Lecture 12.	13	
Practical Topics	Week	Learning
Sina waya aynarimant	1	Outcome
She wave experiment.	1	
Resistance & Capacitance in series (RC series)	2	
experiment. Resistance & coil in series (RL series)		
Resistance, Capacitance & Coil in Series (RLC series)	3	
Experiment.		
Resistance & Capacitance in Series (RC parallel)	4	
Experiment.		
Resistance & Coil in Series (RL parallel) experiment.	5	
Resistance, Capacitance & Coil in Parallel (RLC	6	
Parallel) Experiment.		

Maximum Power Transfer Theory's in (AC) Circuit	7	
Experiment.		
Series Resonance Circuit Experiment.	8	
Parallel Resonance Circuit Experiment.	9	
Calculating Phase Shift Experiment.	10	
Calculating Power by Using Wattmeter Experiment.	11	
Calculating Power without Wattmeter in (AC) Circuit Experiment.	12	