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Seizures, which last for a while and are a symptom of epilepsy, are bouts of excessive and abnormally 
synchronized neuronal activity in the patient’s brain. For young children, in particular, early diagnosis 
and treatment are essential to optimize the likelihood of the best possible child-specific result. 
Electroencephalogram (EEG) signals can be inspected to look for epileptic seizures. However, certain 
epileptic patients with severe cases show high rates of misdiagnosis or failure to notice the seizures, and 
they do not demonstrate any improvement in healing as a result of their inability to respond to medical 
treatment. The purpose of this study was to identify EEG biomarkers that may be used to distinguish 
between children with epilepsy and otherwise healthy and normal subjects. Savitzky-Golay (SG) filter 
was used to record and analyze the data from 19 EEG channels. EEG background activity was used 
to calculate amplitude-aware permutation entropy (AAPE) and enhanced permutation entropy (impe). 
The hypothesis that the irregularity and complexity in epileptic EEG were decreased in comparison 
with healthy control participants was tested statistically using the t-test (p < 0,05). As a method of 
dimensionality reduction, principle component analysis (PCA) was used. The EEG signals of the patients 
with epileptic seizures were then separated from those of the control individuals using decision tree 
(DT) and random forest (RF) classifiers. The findings indicate that the EEG of the AAPE and impe was 
decreased for epileptic patients. A comparison study has been done to see how well the DT and RF 
classifiers work with the SG filter, AAPE and impe features, and PCA dimensionality reduction technique. 
When identifying patients with epilepsy and control subjects, PCA with DT and RF produced accuracies 
of 85% and 80%, respectively, but without the PCA, DT and RF showed accuracies of 75% and 72.5%, 
respectively. As a result, the EEG may be a trustworthy index for looking at short-term indicators that 
are sensitive to epileptic identification and classification.

© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Epilepsy is a neurological disorder disease with more than 50 
million people get affected around the world, epilepsy considered 
the most presented brain disorder and the second most com-
mon neurological problem [1–3]. It causes abnormal neural activity 
changes resulting in recurrent and spontaneous seizure activity in 
epileptic persons including elevation of synchronization of neu-
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ronal firing, which causes an unexpected and transient electrical 
defect in the brain [4].

The classic example of symptoms associated with epilepsy is 
the creation of abnormal feelings, emotions, and sensations in ad-
dition to muscle seizures and loss of consciousness. Ongoing stud-
ies and a proper understanding of epileptic seizures have reduced 
the side effects of the disease based on the affected area and tissue 
of the brain [5–7]. Epileptic seizures often have also negative con-
sequences for the body and mind and social effects as well as are 
associated with wounds, loss of consciousness, and sudden death.

The electrical field produced by brain neurons can be recorded 
by EEG for research purposes. This diagnostic method is considered 
an important tool for assessing brain function in diseases such as 
epilepsy because it includes many neurophysiological and obses-
sive data.
ss article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Identification of the programmed seizure of epilepsy or its ac-
knowledgment help in long-term epilepsy checking as is the case 
for search and recovery.

There are two types of Electroencephalogram (EEG) signals, sta-
tionary and non-stationary. EEG signal stability can be used to 
identify epileptic seizures by time-area highlights and recurrence 
space highlights.

In this way, EEG became the method of choice in both diagnosis 
and research of epilepsy since it can affect areas of the cortex and 
underlying deep-brain systems [8–10]. Tracking of seizure events 
is possible in epileptic persons is available by monitoring unin-
terrupted assessment of brain activity by using a continuous EEG. 
The prompt action by caregivers during monitoring of the epileptic 
person needs a rapid detection of seizure onset or seizure attack, 
however, still under development. The accurate action also needs a 
classification algorithm been compatible with data inputs of short-
term EEG

Visual scanning and prolonged examination is the method used 
to detect epilepsy spikes through EEG recordings, but this method 
takes a long time to diagnose and is inaccurate, especially in the 
long recording by EEG, besides the complexity of the brain and 
its neural signals emanation needs a method to verify the EEG 
recording [11]. The mentioned defects are circumvented by using 
automatic methods such as linear and non-linear time-frequency 
analysis for example largest Lyapunov’s exponent (LLE) and corre-
lation dimension (CD).

By accepting the EEG as a non-stationary signal, strategies have 
been established that rely on changing wavelets and changing mul-
tiple wavelets to examine and sequence epileptic seizures [12–14].

There are two aspects of EEG given a clinical practice widely 
used in research a diagnosis of epilepsy [4]. These two methods 
to detect EEG-based seizures are explained as; a) subjects have 
been screened to distinguish between healthy and epileptic chil-
dren that’s means ictal and interictal EEG distinguished from nor-
mal EEG; b) detect a seizure in children with epilepsy and which 
means ictal is distinguish from interictal EEG.

Nonlinear has been received more attention compared to linear 
methods in EEG characterization since the latter believed to af-
fected by a physiological process controlled inherently, which leads 
to an increase in the importance of EEG signals and emphasizes its 
ability to analyze epilepsy by recognizing epileptic seizures, the de-
termination of the proximity of epileptic seizures is the presence 
of the spikes, the impending seizure can be predicted using the 
EEG signal [15–17].

Due to its ability to record intrinsic and physiologically key 
features [18], entropy measures received attention in the biomed-
ical field, especially those that assess signals’ complexity, that is 
why many entropy measures were been a method of choice for 
their ability to estimate the complexity as a nonlinear healthy 
physiology dynamical biomarker to detect epilepsy by short-term 
EEG [19]. These methods include approximate entropy (ApEn) [20], 
sample entropy (SampEn) [21], permutation entropy [20], symbolic 
dynamics-based entropy [22], and fuzzy entropy (FuzzyEn) [23],
such as the use of entropy such as sample entropy, approximate 
entropy (AE), Kolmogorov entropy, and multiscale entropy (MSE) 
analysis.

Recently a measure of complexity has been introduced, which 
is Permutation Entropy (PE), which is used for different types of 
time series [15]. This method calculates different symbols’ rel-
ative frequency and relies on time series mapping by symbolic 
sequence. These features make the PE an increasingly important 
tool in the analysis activity of EEG (for example see [24]), due to 
its ability to track the dynamics of brain activity the PE consider 
a feature for automated, where it was recently used to describe 
brain activity during epilepsy as in [25]. To achieve useful discrim-
inations, several research efforts have been made in the stages of 
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feature extraction, dimensionality reduction, and classification. To 
prevent overloading the classifier, shorten the calculation time, and 
improve classification accuracy, feature vectors must be carefully 
examined before being applied to the classifier. A common tech-
nique to prevent potential redundancy in high-dimensional data 
is feature dimensionality reduction. By using the dimensionality-
reduced features as an input to the classifiers, the categorization of 
epileptic patients from control individuals by EEG signal analysis 
was made more accurate. The use of principle component analy-
sis (PCA) dimensionality reduction was made possible by its quick 
and easy real-time implementation. Finding a hyper-plane that di-
vides the data points representing several classes and minimizes 
the variance within the class under the supposition of normal data 
distribution is their goal in order to produce a new variable that 
combines the original predictors. To improve classification accu-
racy, this work is the first to employ PCA as a dimensionality 
reduction technique. Finally, classification staging is required to 
distinguish epileptic patients from healthy individuals. Due to their 
high accuracy and superior performance, decision tree (DT) and 
random forest (RF) classifiers are utilized at this step to classify bi-
ological signals like dementia and brain disorders. Therefore, both 
classifiers are used in this investigation.

The main focus of this research is the investigation of epileptic 
seizures in children. AAPE and impe were computed to automati-
cally detect seizures using a Discion Tree and Random Forest clas-
sifiers. The taken issues of classification in the present study were 
presented by classifying both epileptic and normal EEG subjects. 
Depending on the entropy, accurate calculations can be made to 
detect seizures through scalp EEG signals [26,27]. We examine the 
performance of EEG data by applying entropy analysis in the de-
tection of epilepsy based on short-term EEG, where the aim was to 
introduce a short-term analysis protocol that can detect an optimal 
seizure.

The computed performance was suggested for applied AAPE 
and impe, however, we achieved the best performance when (Prin-
ciple Component Analysis) PCA was applied as a dimensionality 
reduction technique.

Therefore, in the present study, AAPE and impe were computed 
to expand the knowledge about the epilepsy process and classify 
children as epilepsy and healthy. The significant differences be-
tween the brains of healthy children and those with epilepsy were 
statistically confirmed using a T-test at the level of significance 
p < 0.05.

2. Materials and methods

Fig. 1 shows a proposed block diagram to show the difference 
between the gender in brain regions in emotional states.

2.1. EEG data acquisition and recording procedure

The EEG data sets were obtained using a Micromed Brain Spy 
Plus Embia via Giotto 2, 31021 Mogliano Veneto, Treviso, Italy, EEG 
recording headset. Data analysis, spike, and seizure detection are 
all done with it. 19 electrodes were employed, including 2 ref-
erence electrodes and 1 ground electrode. It utilized the 10-20 
international standards, therefore the layout of the EEG electrodes 
is (FP1, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T5, P3, Pz, P4, T6, 
O1, and O2). Filters with low pass, high pass, and notch function-
ality were built into the Micromed EEG. The sampling frequency 
was 256 Hz, while the upper cutoff and notch filters removed fre-
quencies of 220 Hz and 50 Hz, respectively. The low pass filter 
suppressed a frequency value of 0.15 Hz. A limit of fewer than 5 
kilo-Ohms was set for the electrode impedance. The participants 
in the current study, 20 primary school youngsters between the 
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Fig. 1. Block diagram of the ongoing study.

ages of 6 and 12 (ten healthy, normal students, and ten abnor-
mal, epileptic students) had their EEG datasets analyzed. None of 
the healthy control youngsters had any neurological or mental dis-
orders. The Human Ethics Committee of the Ibn-Rushd Training 
Hospital in Baghdad, Iraq, gave its approval to each experimental 
protocol. Each epileptic child was chosen from the Neurology Clinic 
at the Ibn-Rushd Training Hospital, and each research participant 
signed an informed consent form (ICF).

2.2. Denoising stage

To get the best results, external noise sources and internal 
ones (patient’s body noise) must be eliminated. Therefore, a butter 
worth notch filter has been used to remove the power line inter-
ference noise and a second-order bandpass filter ranging from 0.1 
to 60 Hz has been used in the first stage.

Savitzky–Golay (SG) sift with unique qualities was used next to 
smooth through the sign with the least demolition. This method 
adopts the post-moving effect of screening the signal in contrast to 
the wavelet. The highlights in the order of periods are protected by 
using the SG channel as they include relative minimums and max-
imums which speak profoundly concern for them with a marker 
division, for example, EEG [28–31].

There are two main parameters in running an SG Filter frame 
size and polynomial arrangement. Therefore, the constants of an 
SG filter were set as in equation (1); points of the EEG signal, 
where N is a window size, Nr and Nl represent right and left 
signal points of a current signal point respectively. The test is 
installed with SG channel specification in polynomial order and 
envelope size of 51 samples to remove noise and smooth out the 
EEG dataset.

N = Nr + Nl + 1 (1)

2.3. Features extraction

The AAPE and impe types of entropy have been estimated in 
this study to distinguish between epileptic EEG signals and those 
from normal, healthy control participants. In this work, features 
from the original EEG time series for each of the 19 channels were 
3

extracted using 60 seconds, N=15360 samples, and 6 windows of 
10 seconds each (2560 samples). Entropies have been utilized to 
find anomalies in the EEGs of pediatric epilepsy patients. AAPE is 
adapted from permutation entropy (PE) of Bandt-Pompe. The AAPE 
system overcomes the problems of normal PE which are ignoring 
the amplitudes mean value and the adjacent samples’ differences. 
This system also helps in solving the problem of recorded identical 
values of amplitude samples (which is applicable for digitized time 
series). In contrast, the is a sensitivity to changes in frequency and 
amplitude of the signals with AAPE methods because it has high 
reliability in determining the signal motifs. In contrast to PE, AAPE 
has the ability to reduce noise effect, and well detection of spikes 
well; even samples have single spikes. The change was larger in 
multi-sample spikes recorded with AAPE compared to PE.

AAPE is obtained, which has a value of ln d!, where d! poten-
tial ordinal patterns d = 3, and scale of l = 1. In contrast, N =
15360 samples, 6 windows of 10-second length (2560 samples) 
were extracted from the original EEG time series for each one 
of the 19th channels. Mathematically, in normal PE (Bandt-Pompe 
method) and the case of conformity with the specification of i set, 
one is added to increase the group frequency and in the case of 
AAPE, 0 to 1 is added to the probability of that set as follows.

A

d

d∑

k=1

|Yt+(k−1)l − Yt+(k−2)l| (2)

Improved multiscale permutation entropy (impe) is also essen-
tially based on PE, where PE is theoretically simple and it has 
fewer parameters, it is relatively robust to artifacts and noise, and 
is computationally fast, which makes it better than other functions 
[32]. Yet the conventional MPE has two main obstacles. The first 
one, the MPE shows no simitry. We can explain the second one 
that when using MPE with long temporal scales of the signal, it 
shows comparably a variance in the results. Computing MPE for 
the coarse-graining process leads to such many samples of the 
resulting coarse-grained sequence equal to � N

τ �, when the scale 
factor τ is high, the number of samples in the coarse-grained 
sequence decreases. This may yield an unstable measure of en-
tropy.

To get rid of these problems, an Improved multiscale permu-
tation entropy (impe) has been introduced, impe is a promising 
method to assess physiological changes affecting various temporal 
scales since it increases the accuracy of entropy calculations, pro-
ducing more accurate and stable results, which has a value of em-
bedded dimension m = 3, and a scale of τ = 1. In contrast, which 
illustrates a completely regular signal, the smallest value of impe 
is obtained as much as 0 for 60 seconds, N = 15360 samples, 6 
windows of 10-second length (2560 samples) were extracted from 
the original EEG time series for each 19 channels where it can be 
calculated in two steps [32]

1. We will rearrange the time series data as follows:

Z (τ )
i = Y (τ )

i,1 , Y (τ )
i,2 , . . . (3)

Where Y (τ )
i, j is:

Y (τ )
i, j =

∑τ−1
f =0 X f +i+τ ( j−1)

τ
(4)

in the MPE method, only Z1(τ ) is considered.
2. PE of each of z1(τ ) | (i = 1, . . . , π) is separately calculated. 

Then, the average of PE values is computed as follows:

impe(x, τ ,d) = 1

τ

τ∑
P E(z1(τ )) (5)
i=1
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d determines the number of accessible states d!.

2.4. Statistical analysis

Nineteenth denoised channels of EEG dataset from 10 solid typ-
ical and 10 epileptic children for cerebral cortex starters were as-
sembled according to scalp area to 5 recording regions. Seven front 
channels were merged with the aforementioned regions and these 
channels are (Fp1,2,3,4,7,8 and Fz) with two- time channels (T3 and 
T5) and three wall channels (P3,4 and Pz) in addition to the occip-
ital channels (O1 and 2) and the 3 central channels (C3,4 and Cz). 
Typicality in the current research was examined by Kolmogorov–
Smirnov test, while homoscedasticity was examined by Levene’s 
test. In this study, a t-test was used as a factual instrument by uti-
lizing SPSS 23. Right now, the test was applied to AAPE and impe 
highlights. For each part, the independent variables (IV) were gath-
erings the subjects (control solid typical and kids with epilepsy) as 
the subsequent IV, though mentioned highlights were the depen-
dent variable (DV). In the current study, all statistical tests were 
set to a p < 0.05.

2.5. Classification

There is a classification for unpruned groups or regression trees 
called random forest [33], this classification depends on the sam-
ples collected during the training and relies on select data on a 
random base. Cases were predicted by predictions of the ensemble 
where the rating or average regression was voted by a majority. 
The choice of the random forest was appropriate, and this is ev-
ident from the significant improvement in performance over the 
single tree classifier such as CART and C4. This system is preferred 
when compared to Adaboost in terms of producing error rates de-
spite the robust noise produced. The random forest algorithm was 
used for feature categorization. Random forests are characterized 
by high accuracy in classification in addition to resistance to over-
training and the efficiency of working with large data and do not 
require normalization of features besides required a few parame-
ters optimizations. These advantages are particularly important in 
the application of the closed-loop when early detection of epileptic 
seizures. Dividing is used in the tree ensemble to create a random 
forest. The bagging technique and random selection feature have 
both been combined within the same classifier (24 and 25). The 
randomness of the trees is performed by selecting sub-groups and 
including 2

3 training data and each node subset of features (26–28). 
Other training parts, 1

3 , calibrate the performance of each tree and 
calculate the error out-of-bag. To determine the development of 
each decision tree in a random forest, a Gini index was used as a 
branched index (29 and 30). The Gini index is also used in calcu-
lating the importance of features, which gives the ability to choose 
the desired feature. Although the feature selection is important in 
optimizing the detection algorithm before loading it for each pa-
tient in the implantable device, in the current research this feature 
has been overridden to examine the patient for the same set of 
features. In the present study, binary decision trees were assigned 
to 100. The increase in the number of trees did not significantly af-
fect the improvement in classification accuracy. According to what 
Liaw and Wiener confirmed, the square root of N is the optimal 
number of randomly selected features (N represents the number 
of features). Based on that, the selected number was closest to 
the square root of the features and the number was four fea-
tures randomly in each node. The “leave one out” cross-validation 
method was used for effect comparison of big versus small train-
ing data sets. Firstly, data for training only one-hour segments of 
EEG containing at least one epileptic seizure were compared with 
data for one-hour sections that did not contain epilepsy. Subclin-
ical seizures of iEEG were used in test data tests and left out of 
4

the training data set. Subclinical seizures have been excluded in a 
recent study, in order to avoid the suspicion that occurs in the 
reading of the signs, due to their similarity with epilepsy to a 
large extent. Although they are similar from an electrophysiolog-
ical point of view to clinical seizures, subclinical seizures are not 
considered real seizures from a medical point of view. Another 
reason to exclude these seizures is that they somehow fall be-
tween the abnormal electrical activity and the clinical seizure, and 
their use in the training data set causes the detection algorithm 
to malfunction. For detection, more than one channel was selected 
all selected channels were checked for performance and features 
and the result was presented from the electrodes as the follow-
ing standards: the delay in seizure detection obtainable channel is 
the shortest one or the false detection rate (FDR) is lesser on the 
obtainable channel. The test used to assess changes in sensitivity 
between the use of one-hour shift slices and all available training 
data was Mann–Whitney’s U-test.

The intracranial early seizure detection algorithm based on EEG 
was first invented by Bremann in addition to forest classification 
references [34]. The growth rules of a forest consisting of T-tree
structure a random classifier are summarized as follows [20]. First, 
assume that the number of cases in the training group is N, after 
which random samples are taken from them and replaced in each 
processed sample and N training samples acquired. It should be 
noted that not all training data is used, while the data can be used 
more than once, or some data may not be used at all. Second, if 
M is the input features dimension, m (m < M) represents arbitrar-
ily nominated sub-features specified dimension from the original 
feature vectors. Then the feature of the variable m is determined 
randomly from the features of the M, and the best split of the node 
is used for this purpose. Third, trees are left to grow without prun-
ing until all training samples are completely separated. The error 
rate in the forest depends on two things. First, the trees are con-
nected within the forest. In general, the more correlation between 
trees increases the error rate, while the lower the error the lower 
the correlation. The second is the power of one tree in the forest. 
Error rate decreases in the forest as the power increases. The num-
ber of features specified is the only parameter that is adjustable 
and sensitive to the random forest. The correlation and strength 
can be reduced by reducing their value. Based on the foregoing, 
a trade-off can be found between connection and strength. In the 
current study, we investigated the effects of different groups of 
trees on classification accuracy to find out the best performance in 
random forests.

3. Results and discussion

The effect of the SG channel is shown in Fig. 2, where the EEG 
data-set recording smoothed as a result of its effect. Channel No. 2 
(Ch2) shows that all the commotion parts of the disturbance were 
stifled, and it is illustrated in the mentioned figure with a blue 
line, while the red line represents the recording EEG of the first 
boisterous.

By using the five electrodes on the scalp, the age match of 
healthy children and those with epilepsy was controlled, and the 
impe entropy and AAPE values were measured, as showed in Ta-
ble 1. The EEG for normal children is higher than that recorded 
for epileptics regarding the impe entropy and the AAPE over the 
temporal and occipital regions of the brain according to equa-
tions (AAPEEpilepsy < AAPENormal) and (impeEpilepsy < impeNormal). 
This higher recording could be explained by an increase in men-
tal activity and the EEG is more regular and less complex during 
an epileptic seizure compared to healthy people. The reduced elec-
trical complexity of the brain in people with epilepsy is recorded 
by dynamic processes which the reason that causes the detection 
of electrical regulation of the brain. The reduced complexity of 
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Fig. 2. The denoising results after using SG filter for Ch2 which represent Fp2.

Table 1
The EEG values for epilepsy patients are presented as (Mean SD) for all five areas 
of the scalp. An asterisk was placed to distinguish between the groups that contain 
a significant difference.

Features Brain regions Normal Abnormal P-value

AAPE Frontal 1.053±0.017 17.058±0.044 0.05*
Temporal 1.059±0.008 1.031±0.044 0.05*
Central 1.053±0.017 1.071±0.087 0.05*
Parietal 063±0.026 1063±0.09 0.05*
Occipital 1.058±0.007 1.013±0.05 0.05*

impe Frontal 1.058±0.044 1.549±0.085 0.05*
Temporal 1.031±0.044 1.489±0.09 0.05*
Central 1.071±0.087 1.583±0.211 0.01*
Parietal 1.063±0.09 1.559±0.217 0.01*
Occipital 1.013±0.05 1.447±0.1 0.05*

the EEG, as indicated by some studies, may be due to the death 
of some neurons, which leads to loss of connectivity and/or defi-
ciency of the neurotransmitter [35]. The results proved that impe 
more efficient than AAPE in diagnosing epilepsy. EEG signals are 
clinically important as a tool for early detection of a seizure, and 
thus differentiate between a normal person and a person with 
epilepsy. The current study indicated that monitoring of clinical 
and even portable EEG and analysis of epileptic seizures with en-
tropy EEG signals are among the promising methods in this field. 
Furthermore, obtained results shows classifier (RF) provides an 85% 
success rate.

4. Conclusions

This study attempts to discriminate between children with 
epilepsy and healthy normal subjects. SG filter has been employed 
for denoising and smoothing the EEG dataset, and using AAPE and 
impe were computed. Statistical analysis using t-test (p < 0.05) 
has been conducted to characterize the features and were used to 
test the hypothesis that the irregularity and complexity in epilep-
tic EEG were reduced in comparison with healthy control subjects. 
AAPE and impe results in reducing the complexity in epileptic pa-
tients compared to the healthy control subjects. Therefore, AAPE 
and impe could be the EEG biomarkers associated with epilep-
tic detection and identification for children patients with epilepsy. 
Finally, EEG could be as a valuable biomarker for inspecting the 
background activity in the identification of children patients with 
epilepsy.
5
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