

(Heat and Mass Transfer) Course Catalogue 2023-2024

College	Erbil College of Technology		
Department	Petroleum Technology		
Module Name	Heat and Mass Transfer		
Module Code	HMT203		
Semester	2		
Credit	5		
Module type	Assist.		
Weekly hours	2		
Weekly hours (Theory)	(2) hr Class	(146)hr Workload	
Weekly hours (Practical)	()hr Class	()hr Workload	
Lecturer (Theory)	Dr Shara Kamal Mohammed		
E-Mail	Shara.Mohammed@epu.edu.iq		
Lecturer (Practical)			
Email			

Course Book

Course overview:

- This course provides a fundamental understanding of heat and mass transfer in the downstream oil industry, particularly in refinery units. It presents theoretical background besides modules to calculate energy balance in the operation units. For this reason, problems and solutions are included throughout the course.

Course objective:

The objectives of the course are to

- 1. learn different methods and theories of heat and mass transfer.
- 2. understand heat and mass transfer process in refinery
- 3. provide knowledge of heat transfer through conduction, convection & radiation
- 4. Calculate temperature and heat flux in one-dimensional conduction
- 5. Learn about heat exchanger design and understand the necessary equations to determine the heat transfer rate in different types of heat exchangers.
- 6. learn about radiation and its use in real life.
- 7. Learn the boiling and condensation processes and their applications in the refinery.
- 8. Understand the concentration and diffusion phenomena in liquid and gases

Student's obligation

Students should be prepared for discussion during the class as they will be provided with the lecture in advance. They will be asked to solve problems during the class and will also be given homework for each subject. In addition, a continuous system of quizzes will be applied throughout the semester to evaluate students' progress. Finally, they will be asked to prepare reports and seminars.

Forms of teaching

lecture halls with data show equipment for lecture presentations, whiteboard, overhead projector, posters

Assessment scheme

24% Mid. Theory exam

8% Quiz

10% Homework

16% Reports and Seminars

2% Attendance

40% final theory

Student learning outcome:

At the end of the course, student will:

- 1. Understand the process of heat and mass transfer in refinery
- 2. Understand how heat & energy is transferred between elements of a system.
- 3. Be able to solve problems involving one or more modes of heat transfer. Students can learn about modes of heat transfer and conduction heat transfer.
- 4. Learn types of convection and dimensional analysis.
- 5. Learn phases of heat transfer in distillation towers
- 6. Be able to learn about heat exchanger types and performance.
- 7. Estimate the heat transfer rate for different heat exchangers
- 8. Will be able to learn different laws of Radiation and its applications.
- 9. Understand mass transfer and learn about its application.
- 10.Learn mass transfer process in refinery
- 11. Will learn the theories and the analytical methods of mass transfer in fluids, liquids and gases.

- Course Reading List and References: References

Incropera, F.P., DeWitt, D.P., Bergman, T.L. and Lavine, A.S., 2007. Fundamentals of Heat and Mass Transfer 6th Edition, Fundamentals of Heat and Mass Transfer.

Sukhatme, S.P., 2005. A textbook on heat transfer. Universities Press.

Cengel, Y.A., 1998. Heat transfer: a practical approach. (No Title).

Baukal Jr, C.E. ed., 2018. The Slipcover for The John Zink Hamworthy Combustion Handbook: Three-Volume Set. CRC press.

Trinks, W. and Mawhinney, M.H., 1967. INDUSTRIAL FURNACES, V 2. JOHN WILEY AND SONS, INC, NEW YORK, N. Y. 1967, 358 P.

Textbooks:

John, H.L.I.V., Lienhard, I.V. and Lienhard, V., 2008. A heat transfer textbook. *Phlogiston Press, Cambridge*.

. Source links:

- 1. http://www.scopus.com.
- 3. http://www.sciencedirect.ru.

Course topics (Theory)	Weak	Learning Outcome
1. Introduction to heat transfer:	1	
What is heat, heat transfer definition. Units and		Understanding heat transfer
dimensions, application of heat transfer,		
Types of heat transfer, Conduction, convection,		
and radiation, Problems and solutions.		
2. Conduction heat transfer 2,3		Understanding
Fourier's law of heat conduction. Thermal	•	conduction heat
Conductivity. Thermal resistance. One dimension		transfer equations

	heat conduction, conductive boundary conditions,		and solving
	overall heat transfer coefficient. Problems and		problems
	solutions		
3.	Convection heat transfer	4,5	
	Conductive heat transfer, conductive heat transfer	4,3	
	in flow through tubes and ducts, laminar flow in		Understanding
	tubes and ducts, turbulent flow in tubes and ducts		convection heat
	forced convection heat transfer in external flow		transfer equations and solving
	Flat plate. Problems and solutions		problems
4.	Radiation heat transfer	6	
	Wave theory, particle theory, concept of black		
	body, Stefan-Boltzmann Law, radiation properties.		Understanding different theories of
	Problems and solutions		radiation heat transfer
5.	Heat exchangers:		
	Definition, classifications of heat exchangers.	7	
	Types of heat exchangers, Over all heat transfer		Understanding heat exchangers and overall heat transfer calculations
	coefficient, The log-mean temperature difference		
	LMTD, Parallel-flow heat exchangers, Counterflow		
	heat exchangers. Problems and solutions		
6.	Boiling and condensation		
	Boiling phenomena, different regimes of boiling,		Understanding boiling and
	classification of boiling, Pool boiling, flow boiling,	8	
	sub-cooled boiling, saturated boiling.		condensate
	Condensation heat transfer, forms of		phenomena besides the different
	condensation: film condensation, dropwise		regimes of boiling.

	condensation, film condensation, condensation on		
	vertical plates and horizontal tubes. Problems and		
	solutions		
7.	Combustion and Furnace		
	What is combustion, types of combustion, heat of	9	Understanding
	combustion. Furnace, what is furnace, types and		combustion and heat transfer in
	classifications, heat transfer in furnace		furnace
8.	Mass transfer:		
	What is mass transfer, applications and examples	10	Understanding mass
	of mass transfer. Mass transfer process in the		transfer in refinery
	refinery, gas absorption, distillation, liquid		
	extraction, adsorption, and membrane separation.		
	Heat and Mass transfer in distillation towers		
9.	Concentration, diffusion phenomena,		
	molecular diffusion equation, Fick's Law of		Understanding
	diffusion, the two modes of mass transfer,	11	concentration and diffusion in liquids
	molecular diffusion, convective mass transfer.		and gases and
	Molecular diffusion in gases, molecular diffusion in		solving problems
	gases, Fick's Law for gases, Problems and solutions		
10	.Mass transfer theories,		
	Film theory, boundary layer theory, penetration		
	theory. Mass transfer between phases, Two-film		
	theory, Problems and solutions		Understanding mass
		12	transfer theories and solving
			problems