Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue			
2023-2024			
College/ Institute	Erbil Technical E	ngineering	g College
Department	Information Syste	m Engineer	ring
Module Name	Machine Learning		
Module Code	ML602		
Degree	Technical Diploma		Bachelor
	High Diploma	Master	PhD 🔳
Semester	1		
Qualification	PhD In Computer	Engineering	3
Scientific Title	Assist. Prof		
ECTS (Credits)	6		
Module type	Prerequisite	Core	Assist.
Weekly hours			
Weekly hours (Theory)	(3)hr Class		
Weekly hours (Practical)			
Number of Weeks	14		
Lecturer (Theory)	Shahab Wahhab Kareem		
E-Mail & Mobile NO.	Shahab.kareem@epu.edu.iq		
Lecturer (Practical)			
E-Mail & Mobile NO.			
Websites			

Course Book

1. Course name	Machine Learning
2. Lecturer in charge	
3. Department/ College	Information Systems Engineering
4. Contact	e-mail: Shahab.karim@epu.edu.iq
	Tel: (optional)
5. Time (in hours) per week	Theory: 3
6. Office hours	
7. Course code	MAL602
8. Teacher's academic profile	Shahab Wahhab Kareem I received my BSc in Control and Computer
	Engineering from the University of Technology Baghdad in 2001, and MSc
	in Software Engineering from Salahadeen University in 2009. He is a PhD
	in Yasar University Izmir, Turkey 2020. My research interests include
	Machine learning and Big data. I'm an Asist. Prof. at the Information
	System Eng. (ISE) Department (2011-till now)
9. Keywords	Machine Learning, Deep Learning, Dection, Recognition

10. Course overview:

Machine Learning is concerned with computer programs that automatically improve their performance through experience (e.g., programs that learn to recognize human faces, recommend music and movies, and drive autonomous robots). This course covers the theory and practical algorithms for machine learning from a variety of perspectives. We cover topics such as decision tree learning, Support Vector Machines, neural networks, boosting, statistical learning methods, unsupervised learning, active learning, and reinforcement learning. Short programming assignments include hands-on experiments with various learning algorithms.

11. Course objective:

The course aims to provide an introduction to the basic principles, techniques, and applications of Machine Learning. Programming assignments are used to help clarify basic concepts. The course covers the principles, design and implementation of learning programs that improve their performance on some set of tasks with experience. Upon successful completion of the course, students will have a broad understanding of machine learning algorithms and their use in data-driven knowledge discovery and program synthesis. Students will have designed and implemented several machine-learning algorithms in Java. Students will also be able to identify, formulate and solve machine learning problems that arise in practical applications. Students will have a knowledge of the strengths and weaknesses of different machine learning algorithms (relative to the

characteristics of the application domain) and be able to adapt or combine some of the key elements of existing machine learning algorithms to design new algorithms as needed. You will have an understanding of the current state of the art in machine learning and be able to begin to conduct original research in machine learning.

12. Student's obligation

Homework assignments will be a mix of paperwork and machine problems. Written homework should be finished individually, and discussions with peers or instructor is allowed, but copying or any other type of cheating is strictly prohibited. You will be given one week to finish the written homework. Some of the machine problems are designed for teamwork and due day may vary. Any late submission will incur a 15% penalty for that assignment.

13. Forms of teaching

داتاشۆ و پاوەر پۆينت، سەر تەختەر ەش، تەختەي سېي، ھتد

14. Assessment scheme

Both article review and final exams will be closed-book written exams. The coverage of the exam will be discussed before the exam. A review session will be given one week before the exam. The format of exam questions include True/False question, short answer questions, and short essay questions. The length of the exams will between 120-180 minutes in class.

15. Student learning outcome:

By the end of this course, the student should:

- Analyse and identify significant characteristics of data sets.
- Develop an understanding of training a learning algorithm including over-fitting, noise, convergence and stopping criteria.
- Match a data set with the most promising inductive learning algorithms.
- Understand and implement the training, testing, and validation phases of learning algorithms development and deployment.
- Determine the computational complexity associated with development and execution of learning algorithms for a given data set.
- Develop hands on experience with the leading set of inductive learning algorithms.
- Apply machine learning algorithms for classification and functional approximation or regression.

16. Course Reading List and References:

1- Introduction to Machine Learning with Python: A Guide for Data Scientists *Andreas C. Müller, Sarah Guido*

2- Machine Learning with Python Cookbook: Practical Solutions from Preprocessing

to Deep Learning <u>Chris Albon</u>

3- Machine Learning Tom M. Mitchell

4- Probabilistic Machine Learning: An Introduction

17. The Topics:

Lecturer's name

	Lecture	Topics	Readings and useful links
		Intro, Admin	
	Course	Machine Learning Examples	
1	Overview	Estimating Probabilities from Data	
		Bayes Rule	Mitchell Chapters 1,2,6.1-6.3
	Decision Tree	MLE	Murphy Chapter 2
	Learning	MAP	Bishop Chapter 1,2
	Learning Linear Separators	Learning Linear Separators	Mitchell Chapters 4.1.2 and 4.4.1
		The Perceptron Algorithm	Bishop Chapter 4.1.7
2		Margins	<u>Daume</u>
	Decision Tree	The Big Picture	Mitchell: Estimating
	Learning	Overfitting	<u>Probabilities</u>
		Conditional Independence	
3	Naive Bayes	Naive Bayes: Why and How	Mitchell: Naive Bayes and Logistic Regression
		Naive Bayes: Why and How	
	Naive Bayes	Bag of Words	Mitchell: Naive Bayes and Logistic Regression

			Logistic Regression: Maximizing Conditional Likelihood	<u>Weinberger: Gradient</u> <u>Descent</u>	
4	Logistic Regression	Gradient Descent	Mitchell: Naive Bayes and Logistic Regression		
			Kernels	Bishop 6.1 and 6.2	
		Kernels	Kernelizing Algorithms	<u>Notes</u>	
		Kerners	Kernelizing Perceptron		
			Problems and Challenges in Computer Vision		
5	;	Application Area: Computer Vision	Deep Learning in Computer Vision		
		Kernels cont'd	Kernels	Bishop 6.1 and 6.2	
			Kernelizing Algorithms	<u>Notes</u>	
			Kernelizing Perceptron		
			Geometric Margins		
		Support Vector Machines	SVM: Primal and Dual Forms	<u>Notes on SVM by</u> Andrew NG	
6	6		Kernelizing SVM		
			Sample Complexity	Mitchell: Ch 7	
		Generalization and Overfitting	Finite Hypothesis Classes	<u>Notes on</u> <u>Generalization</u>	
7	,		Sample Complexity	Mitchell: Ch 7	

Directorate of Quality Assurance and Accreditation

بەر يۆەبەرايەتى دڭنيايى جۆرى و متمانەبەخشىن

_					
		Generalization and Overfitting	VC Dimension Based Bounds	<u>Notes on</u> <u>Generalization</u>	
			Sample Complexity	Mitchell: Ch 7	
		Generalization and Overfitting	VC Dimension Based Bounds	Notes on Generalization	
			Sturctural Risk Minimization		
		Model	Regularization		
		Selection, Regularization	k-Fold Cross Validation		
	8		Linear Regression		
		Linear Regression	Minimizing squared error and maximizing data likelihood	<u>Murphy: Ch 7.1 - 7.3</u>	
			Neural Networks		
		Neural Networks	Backpropagation	Mitchell: Chapter 4	
			Convolution		
	9	9 Deep Networks	Convoluational Neural Networks	<u>Goodfellow: Chapter</u>	
			LeNet-5 Architecture	<u>9</u>	
	10	Deasting	Boosting Accuracy	<u>Schapire's NIPS</u> Tutorial	
	10	Boosting	Adaboost	Schapire's Survery	

	1		1	
		Objective Based Clustering	Hastie, Tibshirani and Friedman, Chapter 14.3	
	Unsupervised Learning	Hierarchical Clustering	<u>Center Based</u> <u>Clustering: A</u> <u>Foundational</u> <u>Perspective (Sections 1-3)</u>	
		Hierarchical		
l	Learning	Clustering PCA		
	Representations, Dimensionality Reduction	Dimensionality Reduction	Bishop 12.1, 12.3	
		Active Learning		
11	11 Interactive Learning	Common heuristics, Sampling bias		
		Safe Disagreement Based Active Learning Schemes	<u>Two Faces of Active</u> <u>Learning by by Sanjoy</u> <u>Dasgupta</u>	
	Semi- 12 Supervised Learning	Semi-supervised Learning	Semi-Supervised	
12		Transductive SVM	<u>Learning in</u> Encyclopedia of	
		Co-training	<u>Machine Learning, Jerry</u> <u>Zhu</u>	
13	Reinforcement Learning	Markov Decision Processes	Mitchell, Chapter 13	

	14		Value Iteration	<u>Kaelbling, et al.,</u> <u>Reinforcement</u> <u>Learning: A Survey</u>		
			Q-Learning			
	15	Online Learning	Online Learning. Recap.	<u>Avrim Blum survey</u>		
_	18. Practical Topics (If there is any)					
	19. Examinations:					
	20. Extra notes:					
	21. Peer review: Dr.Roojwan Sc. Hawezi					