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Abstract—Detecting three-dimensional (3D) objects has 

attracted the growing attention in 3D computer vision research. 

However, the low precision value is a significant trouble in many 

applications, like automatic driving, robotics, and medical 

applications. To solve the low precision problem, we use the 3D 

EIoU loss as localization loss, which emphasizes on the 

overlapping degree, central position, and structural shape 

between two rectangular bounding boxes. Furthermore, we 

propose an EIoU-NMS to enhance the process of suppressing 

redundant detecting boxes. By incorporating the 3D EIoU loss 

and EIoU-NMS into the PointPillars one-stage detectors, the 

detection performance for 3D point cloud objects is 

considerably improved. By using the KITTI benchmark, 

empirical experiments have been conducted to measure the 

average precision (AP) values for detecting Car, Cyclist, and 

Pedestrian objects. 

Keywords— object detection, localization accuracy, 3D 

bounding box regression, 3D loss function 

I. INTRODUCTION  

3D LIDARs are widely used sensors for 3D object 
detecting. The captured point cloud data are sparse and 
unstructured, which makes an urgent problem in the object 
detecting process. Deep learning object detection techniques 
are used in autonomous driving, mobile robot, and others 
many because of their high detection accuracy. Many studies 
use RGB cameras for detecting 3D objects [1][2]. During the 
projection process of the 3D environment to a 2D image, the 
spatial information will be lost. This information is very 
important in many applications such as path planning and 
decision making. On the other hand, the point cloud data 
contains structural and 3D spatial information about a 
particular area. The acquisition of point cloud data is more 
suitable nowadays with the fast development of LIDAR. As a 
result, the point cloud 3D object detection techniques have 
become an essential part of different 3d applications.  

Low detection precision for point cloud objects is the main 
problem in many deep learning 3D object detection 
algorithms. Some technologies [3][4], use images for 2D 
detection algorithm, for achieving 3D object detection a 
bounding box regression was used. The KITTI dataset in the 
work [5] has achieved good results by using a perfect 2D 
detector for images. But these techniques have expensive time 
costs, and they are extremely dependent on 2D image 
technology. For solving these shortcomings, we propose that 
just the point cloud data be utilized for 3D object detection to 
decrease time cost, by using the new 3D EIoU loss function 
the alignment of 3D ground truth and the prediction bounding 
box can be reduced. Adding the New EIoU-NMS process to 
PointPillars network, enhance the precision of the 3D object 
detecting method. 

Object classification and localization are the main tasks in 
any object detection process. The bounding box regression 

step shows an essential part in the object detection process. 
Numerous studies like [6][7] depend on the bounding box 
regression to find the object location accurately. Using a 
reasonable regression loss function improves the accuracy 
value of the bounding box and optimizes the architecture of 
the deep neural network. As a result, several regression loss 
equations have been proposed, which are also used in 
removing the duplicated bounding box for the Non-Maximum 
Suppression (NMS) process.    

The popular loss functions, the l1-smooth, and l2-norm or 
mean square error are used mainly to optimize the bounding 
box. These functions cannot consider the Intersection Over 
Union value [8]. Furthermore, the IoU loss function has a 
problem and cannot be used for the evaluation process when 
the two bounding boxes are totally not overlapped. The 
Generalized Intersection over Union (GIoU) is also not 
convent when its value is equal to IoU [8]. The Distance 
Intersection over Union (DIoU) and Complete Intersection 
over Union (CIoU) are useful loss functions, but considering 
the distance between bounding boxes is not sufficient without 
considering the aspect ratio of the bounding boxes [9]. So 
adding the properties of the DIoU to CIoU will lead to a better 
evaluation function and this function named, the Efficient 
Intersection over Union (EIoU) loss function [10], which is 
used for the 2D object detecting process before this work and 
we propose a 3D EIoU loss function for increasing the 
accuracy of 3D object detecting values. 

In this study, we propose three 3D loss functions: 

Complete-IoU (CIoU), Distance-IoU (DIoU), and Efficient-

IoU (EIoU). We simply change the previous 2D CIoU, DIoU, 

and EIoU to 3D loss functions by using the 3D coordinate x, 

y, and z with also the three sides’ terms of the bounding box, 

width, height, and length. The new 3D EIoU loss function 

leads to much faster convergence than other 3D loss functions, 

CIoU, DIoU, GIoU and IoU. Furthermore, we suggest that a 

good 3D loss for bounding box regression should consider 

three geometric sides’ changes with midpoint distance. By 

using the three sides’ changes alone, we further propose a 3D 

Complete-IoU (CIoU) loss for bounding box regression, 

leading to faster convergence and better performance than 

IoU, GIoU and DIoU losses. The 3D DIoU loss function 

performs better than other functions (i.e. GIoU and IoU). 

Additionally, the 3D EIoU loss considers the three sides’ 

changes with the midpoint distance between the two 3D 

bounding boxes, the resulted performance is better than CIoU. 

Additionally, 3D EIoU may be used as criteria in non-

maximum suppression (NMS), which considers both the 

distance between the midpoint of two bounding boxes and the 

three geometric sides’ changes while suppressing redundant 

boxes. To evaluate our proposed methods, EIoU loss and 

EIoU-NMS are incorporated into the PointPillars network for 
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measuring object detection performance on the KITTI 

dataset[11][5]. 

 
 In specific, the key influences of this study can be briefly 

outlined as follows. Firstly, a Complete-IoU loss, i.e., 3D 
CIoU loss, is proposed for bounding box regression, which 
has faster convergence than 3D IoU, 3D GIoU and 3D DIoU 
losses. Secondly, a 3D Distance-IoU loss, i.e., 3D DIoU loss, 
is proposed for 3D bounding box regression which has faster 
convergence than 3D IoU, and GIoU losses. Thirdly, a 3D 
Efficient-IoU loss, i.e., 3D EIoU loss, is proposed which takes 
the three sides’ changes with central distance between two 
boxes midpoint, the 3D EIoU has faster convergence than 
other loss functions. Fourthly, the 3D EIoU function is added 
to the PointPillars network for optimizing bounding box 
regression. Finally, the EIoU-NMS process is performed to 
remove the duplicated bounding box. The detection pipeline 
for the network is tested on the KITTI benchmark dataset and 
caused the network to be better than others for average 
precision (AP)values. 

The paper is structured as follows. The related work is 

reviewed in Section II. Driving the 3D loss function CIoU, 

DIoU, and EIoU is discussed in Section III. The experiment 

and exploration for object detection, by using 3D EIoU 

illustrated in Section IV, followed by conclusion.  
 

II. RELATED WORK 

       According to how the input data is represented, there are 

three different types of 3D object detection techniques: 

monocular based on image, second based on point cloud, and 

third based on fusion inputs. 

A. Monocular image-based detection techniques  

These methods have lack of 3D space information, which  

is the most challenging issue. However, studies [1][2] 

focused on these methods because the used tools for 

obtaining the monocular images are suitable and cheap. The 

[1] study obtained 3D proposal objects from the predefined 

3D regions, where the objects must be on the ground area to 

take 3D proposal objects from monocular images. Contextual 

information, for each candidate, the typical object’s size, 

shape, and prior location are scored to select the best 

candidates. Research [2] solved the calculating charge of 3D 

sliding windows in [1] where the category, position, and the 

orientation angle of the 2D bounding box are predicted firstly 

in a monocular-based image. At that time the size value of the 

3D box and position coordinate points are estimated in the 

camera coordinates plane. The generated 3D bounded box is 

projected in three views, Front, side view, and Bird’s Eye 

View map (BEV). The 2D box's texture information was 

combined with the 3D structural features that were extracted 

from projected surface regions. The performance of the 

detection process improved, and the 3D bounding box 

refined, by using the fused features. This process obtains 

superior performance but the detecting precision was far 

away from achieving the necessities of automatic driving and 

many other usages.    

B. Point Cloud-based Detection Techniques 

The real world scenes directly reflected by point cloud 

data. In contrast to monocular pictures, point cloud data 

include critical information for 3D object detection. Due to 

the irregularity of the 3D point cloud data, deep learning 

cannot be utilized to immediately detect an object in the point 

cloud. There are two methods that are frequently used to 

transform point clouds into consistent data, after which the 

data is put to a 3D object detection network. The first method 

achieves 2D images [6][7][12]by projecting the point cloud 

data to the 2D plane. Complex Yolo [6] and PIXOR [7] 

projected point cloud data to bird’s eye view and applied a 

2D detecting process on the projected image, the point cloud 

here was utilized efficiently. However, the detection 

performance was poor where the point cloud's spatial 

structural evidence was lost. 

      Some studies like [13] [14] [15], convert point cloud data 

to 3D voxel grids, without projecting the point cloud to 2D 

plane’s coordinates. VoxelNet [13] and SECOND [14] are 

one-stage detectors. After the voxels process, the whole point 

cloud denoted by a four-dimension tensor. The region 

proposal network (RPN) is the final 3D convolutional layer 

that handles this tensor in a sequential manner [14], the RPN 

calculated classification value and bounding box regression 

map. Voxelization used in this study to convert point clouds 

into regular data for the 3D object detection process.   

C. Image-point cloud fusion-based detection techniques 

In various studies, RGB picture and depth map have been 

merged for 3D object detection [16][17][18][19]. In the [17] 

study, the convolutional neural networks took color features 

from RGB images, and from the depth map, it extracted 

geometric features. Then advanced visual features and 

geometric features were extracted using deep belief networks 

(DBN). These learned features are used to obtain a fused 

feature for object detection.  

In the [18] study, the CNN was used to extract the geometric 

and appearance features from the depth and RGB images 

correspondingly, obtaining 2D detecting results from RGB 

images. The resulted 2D bounded boxes joined with 

geometric features, classification outcomes with the final 

results transformed to 3D space. Additionally, the bounding 

box regression was useful for refining the 3D boxes. 

However, the [19] study directly combined geometric and 

appearance feature, which were then used to determine the 

final detection results. These techniques slowed down the 

detecting process and increased the cost of calculation. In 

these methods, the appearance and geometry features were 

extracted in various ways. 

      Some methods [3][4][20][21] fused point cloud with 

RGB image for 3D object detection. Typically, [3] work 

represented a point cloud as a bird's eye view (BEV). More 

information was collected when the detecting system was fed 

the FV and BEV of the point cloud with the RGB picture. The 

BEV suffers less occlusion, which was useful for the 3D 

object detection process. The resulted object is projected to 

FV and RGB images. The learned features from these views 

fused for bounding box regression and object classification. 

[4] is a two-stage 3D object detector that used RGB photos to 

identify objects; in the first stage, 2D detecting boxes  

created, and in the second stage, the 2D boxes projected into 

a point cloud to create a point cloud frustum. Finally, the 

results were segmented, and 3D bounding boxes were 

calculated.  

      According to the research mentioned above, the projected 

3D bounding box strongly relies on the 2D area proposal 



network to perform better. Unlike these approaches, to 

increase the precision of 3D object detection, we exclusively 

used point cloud data. 

III. METHOD 

In this section, we propose the 3D Complete IoU, Distance 

IoU, and Efficient IoU loss functions. By taking the three 

coordinate points x,y,z and the three boxes’ sides width, 

height and length, while the previous works [9][10] find these 

loss functions for 2D boxes with x,y coordinate and using 

only two sides for boxes, width and height only. 

A. Distance-IoU loss function 

      For minimizing the standardized distance between center 

points of two 3D bounded boxes distance-iou loss function 

used, which has the following penalty term  

ℛ𝐷𝐼𝑜𝑈 =
𝑝2(𝑏,𝑏𝑔𝑡)

𝑐2  ,                            (1) 

where 𝐵 and 𝐵𝑔𝑡 3D boxes have central points denoted by 𝑏 

and 𝑏𝑔𝑡  in the above equation. The 𝑝(. )  denotes the 

Euclidean distance, and the 𝑐  value denotes the diagonal 

length of the smallest enclosing 3D box that contains the two 

boxes. Then the DIOU loss function defined as 

𝐿𝐷𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +
𝑃2(𝑏,𝑏𝑔𝑡)

𝐶2  .                       (2) 

The DIoU loss straightly decreases the distance between 

central points. The DIoU loss function is invariant to the scale 

of the bounding box. 

 

B. Complete IoU loss function 

      The CIOU loss function takes into account three 

geometrical components. These factors are the overlap area, 

the midpoint distance, and the aspect ratio [9]. By defining 

the 3D predicted box 𝐵  and the 3D targeted box 𝐵𝑔𝑡 , the 

CIOU loss equation is written as follows. 

𝐿𝐶𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +
𝑃2(𝑏,𝑏𝑔𝑡)

𝐶2 + 𝛼𝑣.                (3) 

Both 𝐵 and 𝐵𝑔𝑡3D boxes have central points denoted by 𝑏 

and 𝑏𝑔𝑡 in the above equation. The Euclidean distance 𝑃 is 

measured and is calculated as follows. 

𝑃(. ) = ||𝑏 − 𝑏𝑔𝑡||2                              (4) 

The 𝐶 value denotes the diagonal line value of the smallest 

enclosed 3D box covering the two boxes. The α is a positive 

trade-off factor, and v processes the uniformity of aspect 

ratio, 

𝑣 =
4

𝜋
(tan−1 ℎ

√𝑙2+𝑤2
− tan−1 ℎ𝑔𝑡

√𝑙𝑔𝑡
2 +𝑤𝑔𝑡

2
)2.           (5) 

and  𝛼 =
𝑣

(1−𝐼𝑂𝑈)+𝑣
 , measures the discrepancy of the height 

to length and width ratio. For the final optimization of CIoU 

loss, the partial derivative of 𝑣 to height (ℎ), width (𝑤), and 

length ( 𝑙) is calculated as follows. 

𝜕𝑣

𝜕ℎ
=    (tan−1 ℎ

√𝑙2+𝑤2
− tan−1 ℎ𝑔𝑡

√𝑙𝑔𝑡
2 +𝑤𝑔𝑡

2
)    

8

𝜋2 [
√𝑙2+𝑤2

𝑙2+𝑤2+ℎ2],  (6) 

 

𝜕𝑣

𝜕𝑙
= (tan−1 ℎ

√𝑙2+𝑤2
− tan−1 ℎ𝑔𝑡

√𝑙𝑔𝑡
2 +𝑤𝑔𝑡

2
)

−8

𝜋2 [
ℎ𝑙(𝑙2+𝑤2)

−
1
2

𝑙2+𝑤2+ℎ2 ],     (7) 

𝜕𝑣

𝜕𝑤
= (tan−1 ℎ

√𝑙2+𝑤2
− tan−1 ℎ𝑔𝑡

√𝑙𝑔𝑡
2 +𝑤𝑔𝑡

2
)

−8

𝜋2 [
ℎ𝑤(𝑙2+𝑤2)

−
1
2

𝑙2+𝑤2+ℎ2 ].    (8) 

Both converge speed and detection accuracy improved by 

using the CIOU loss compared to previous loss functions. 

However, the term 𝑣  in 𝐿𝐶𝐼𝑂𝑈  it still slows down the 

convergence speed of two bounding boxes. 

 

C. 3D EIoU loss function 

       We proposed an efficient version of 3D IoU loss, i.e., a 

3D EIoU loss. This 3D EIoU loss function can handle three 

axis-aligned bounding boxes, where the EIoU loss is defined 

as follows, 

                          𝐿𝐸𝐼𝑜𝑈 = 𝐿𝐼𝑜𝑈 + 𝐿𝑑𝑖𝑠 + 𝐿𝑎𝑠𝑝 ,                   (9) 

                                     =  1 − 𝐼𝑜𝑈 +
𝑝2(𝑏,𝑏𝑔𝑡)

𝑐2 +
𝑝2(𝑤𝑝 ,𝑤𝑔𝑡)

𝐶𝑤
2 +

                                               
𝑝2(ℎ𝑝,ℎ𝑔𝑡)

𝐶ℎ
2 +

𝑝2(𝑙𝑝,𝑙𝑔𝑡)

𝐶𝑙
2   .               (10)          

       where 𝐶𝑤, 𝐶ℎ, and 𝐶𝑙 are the width, height, and length of 

the smallest box that encloses the two boxes. The above loss 

equation is divided into three parts: the IoU loss 𝐿𝐼𝑜𝑈, the 

distance loss 𝐿𝑑𝑖𝑠, and the aspect loss 𝐿𝑎𝑠𝑝. The CIoU loss 

and DIoU loss characteristics can be observed in the above 

equation. The EIoU loss directly reduces the difference in 

width, height, and length between the target and anchor 

boxes, which leads to faster convergence speed and better 

localization. It is essential to examine the relationship among 

loss functions by conducting the simulation experiment. 

 

D. Non-Maximum Suppression with EIoU 

     In the proper NMS process, the IoU value was utilized to 

remove the redundant detected boxes. However, the overlap 

area may yield incorrect suppression for the occlusion 

situation. In this study, we propose that EIoU is a more 

suitable technique for NMS, by using EIoU, the overlap area, 

the three sides’ changes, and the midpoint distance value 

between the two bounding boxes must be measured in the 

suppression process. The 3D bounded box with the highest 

confidence score is preserved, and any nearby bounded boxes 

are eliminated.  

IV. EXPERIMENTATION PROCESS AND RESULTS 

 

     All detection trained, and all results on standard object 

detection benchmarks are reported, on the KITTI dataset. The 

proposed 3D EIoU algorithm evaluates by applying it to 

PointPillars, one-stage object detection instructions. 

 

A. The Experimental Setting 

The experimental area in this work organized as follows: 

laptop with Asus Ryzen 9 CPU (4.6 GHz, 8 cores), 40 GB 

RAM, Ubuntu 20.04 64-bit operating system. NVIDIA 

GeForce RTX 3070 laptop GPU 8GB, Cuda V11.1. 

B. Dataset and Training Step 

Two subsets provided by the KITTI dataset, one of them 

contain 7,481 point cloud files and image files, used for 

training, the other subset contains 7,518 used for testing. Due 

to the inaccessibility of the original test subset's ground truth, 

we divide the original training subset into new training and 

validation sets. As a consequence, we are able to obtain 3,712 

samples of data for training and 3,769 samples of data for 

validation. Three difficulty levels hard, moderate, and easy, 



have been assigned to the object detection on the KITTI 

benchmark. For each valid frame, the point cloud has been 

utilized to detect objects.  

 We train the original PointPillars ideal model using the 

authors' code that was made available with the same config 

file (xyres16.config) to obtain the baseline outcomes for 

using smooth l1 loss as a regression loss function. We 

compare these baseline results with the results generated from 

using the EIoU loss function. And for the second time, we 

compare the baseline results by adding the NMS-EIoU 

process to the Pointpillars model. 

 

C. Evaluation  Step and Aanalysis Detection Outocomes 

In this experiment, the 𝐴𝑃|𝑅40 metric used for evaluation, 

we calculate the 𝐴𝑃|𝑅40 by a certain IoU threshold for each 

difficulty class to get the localization and precision accuracy 

for each object. IoU threshold for a car is equal to 0.7 and for 

cyclists and pedestrian is equal to 0.5. In Table I we measure 

the relative improvement between the two biggest values. 

From Table I, EIoU loss combined with EIoU-NMS brings a 

marvelous improvement of 1.53%  𝐴𝑃|𝑅40 , 1.7369% 

 𝐴𝑃|𝑅40 , and 1.781%  𝐴𝑃|𝑅40  for class cyclist. While the 

𝐴𝑃|𝑅40  values for pedestrian class improved by 1.6084%, 

1.3869, and 1.633% for each difficulty easy, moderate, and 

hard correspondingly. The class car did not exhibit any 

improvement after the addition of the combined EIoU loss 

and EIoU-NMS, indicating that EIoU loss and EIoU-NMS 

are only appropriate for tiny bounding boxes with 3D 

geometric dimensions. The cyclist and pedestrian classes 

have small 3D bounding boxes compared with car class. We 

can see this very clearly in the results in Fig.1, Fig.2, and 

Fig.3. The outcomes of the bird's eye view map (BEV) are 

displayed in Table II. By adding the EIoU loss with NMS-

EIoU to PointPillars, the class cyclist improved its 𝐴𝑃|𝑅40 

values, 0.6861% for easy, 1.1402% for moderate and 

0.7205% for hard. While the class pedestrian gets the 

following 𝐴𝑃|𝑅40  improved values, for easy, it is equal to 

1.2782%, moderate improved by 1.213% and hard difficulty 

improved by 1.2936%. The class car did not get any 

improvement because of its big bounding boxes compared to 

cyclist and pedestrian classes. 

 

 
 

Fig.1 Car class with a green label 

 

 
 
Fig.2 Cyclist class with a yellow label 

 

 
 
Fig.3 Pedestrian class with a blue label 

 

Table I. The evaluation outcomes by training PointPillar with smooth-l1, EIoU and NMS-EIoU losses. The outcomes are calculated on the KITTI val set on the three 

difficulties for each class which have 3D boxes 

 Car Cyclist Pedestrian 

Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard 

PointPillars 87.4355 78.3913 75.4573 80.7919 63.8438 59.6073 54.9425 49.1772 44.7744 

PointPillars+EIoU 87.8606 78.3795 75.7117 82.4072 63.7676 59.6324 54.3985 48.7929 44.5937 

PointPillars+EIoU+NMS-EIoU 87.4358 78.1 75.2073 83.9372 65.5807 61.4134 56.5509 50.5641 46.2267 

Relative improvement % -0.4248 -0.0118 -0.2544 1.53 1.7369 1.781 1.6084 1.3869 1.633 

Table II.  The evaluation outcomes by training PointPillar with smooth-l1, EIoU and NMS-EIoU losses. The outcomes are calculated on the KITTI val set on the three 

difficulties for each class which have BEV boxes 

 Car Cyclist Pedestrian 

Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard 

PointPillars 91.6571 87.9629 86.9057 87.3822 68.978 64.7245 60.9621 54.7965 50.7874 

PointPillars+EIoU 91.9859 88.0358 86.9768 87.8581 68.8679 64.2836 59.8845 54.1707 49.9252 

PointPillars+EIoU+NMS-EIoU 91.614 87.7334 86.4052 88.5442 70.1182 65.445 62.2403 56.0095 52.081 

Relative improvement %  -0.3288 -0.0729 -0.0711 0.6861 1.1402 0.7205 1.2782 1.213 1.2936 

          



D. Relationship among Loss Function 

For finding the best loss function among the explained 

functions, we conduct a simulation experiment. The relations 

between bounded boxes are mostly in terms of aspect ratio, 

distance, and scale are covered in the simulation experiment. 

In specific, seven 3D boxes with several aspect ratios are 

utilized (i.e.,1:1:1, 0.33:1:1, 1:0.33:1, 1:1:0.33, 1.5:1:1, 

1:1.5:1 and 1:1:1.5) as 3D target boxes. The seven 3D target 

boxes' center points are set at (5,5,5), see Fig.4. In a circle 

with a radius of 3 and centered at (5,5,5), the 3D anchor boxes 

are equally distributed at 1,000 points. The 1,000 points are 

correspondingly chosen to place the 3D anchor boxes with 

seven aspect ratios and seven scales. In these situations, non-

overlapped and overlapped 3D boxes are involved. At each 

point, the volumes of the 3D anchor boxes are set to 0.5, 0.67, 

0.75, 1, 1.33, 1.5, and 2. For a given point and scale, seven 

aspect ratios are considered, i.e., following the same setting 

with 3D target boxes (i.e., 1:1:1, 0.33:1:1, 1:0.33:1, 1:1:0.33, 

1.5:1:1, 1:1.5:1 and 1:1:1.5). All the 1,000 x 7 x 7 3D anchor 

boxes should be fitted to each 3D target box. Totally the 

regression cases will be equal to 343,000 = 7 x 7 x 7 x 1,000, 

see Fig.4.  

 

Algorithm I:Simulation Experiment  

Input: Loss ℒ  function with altered target attributes 

constraints and iteration T. 

            𝑀 = {{𝐵𝑛,𝑠}𝑠=1
𝑆 }𝑛=1

𝑁   is the set of anchor boxes at 

N=1,000 equally spread points within the circular area 

with center (5,5,5) and radius 3 and S= 7 x7 covers seven 

scales and seven aspect ratios of anchor 3D boxes.  

          𝑀𝑔𝑡= {𝐵𝑖
𝑔𝑡

}𝑖=1
7 is the set of target 3D boxes that are 

positioned at (5,5,5), and have seven aspect ratios. 

Outcome: Regression error 𝐸 ∈ ℝ𝑇𝑥𝑁 

1: Initialize 𝐸 = 0 and maximum iteration value 𝑇. 

2: Do bounded box regression: 

3: for 𝑛 =  1 to 𝑁 do 

4:       for 𝑠 =  1 to 𝑆 do  

5:              for 𝑖 =  1 to 7 do 

6:                    for 𝑡 = 1 to 𝑇 do  

 

7 𝜂 = {

0.5                                   𝑖𝑓 𝑡 <= 0.8 𝑇
0.05                                 𝑖𝑓 0.8𝑇 < 𝑡 <

0.005                             𝑖𝑓 𝑡 > 0.9 𝑇
=0.9 𝑇 

8:  find 𝐺𝑛 
𝑡−1 which is the gradient of ℒ(𝑏𝑛

𝑔𝑡
, 𝑏𝑛

𝑡−1) 

9:  𝑏𝑛
𝑡 =𝑏𝑛

𝑡−1 +  𝜂 𝐺𝑛 
𝑡−1 

10: 𝑒𝑛
𝑡 = 𝑒𝑛−1

𝑡 + |𝑏𝑛
𝑡 − 𝑏𝑛

𝑔𝑡
| 

11:                   for End 

12:            for End 

13:        for End 

14:  for End 

15: return E 

 

 

 

 

 
 
Fig.4 The 343,000 regression cases adopt by examining several distances, 
aspect ratios, and scales. 

 
Fig.5 Multiple loss equations' regression error graph lines at iteration t. 

 

The performance illustrated in Fig.5 is the result of running 

the above-mentioned simulation with an iteration number of 

200. The error value decreases for the EIoU loss function, 

indicating proper behavior for this loss function.  

 

 

V. CONCLUSIONS 

 

In this study, we presented three 3D losses—CIoU loss, 

DIoU,and EIoU loss—for bounding box regression as well as 

EIoU-NMS for reducing redundant detection boxes. The 3D 

EIoU loss function can reach quicker convergence than the 

3D DIoU, GIoU, and IoU loss functions by directly 

decreasing the distance between the midpoint of two 3D 

bounding boxes. Additionally, the 3D EIoU loss takes three 

geometric sides’ changes into account, and leads to faster 

convergence and better performance than the 3D CIoU loss 

function. The 3D EIoU-NMS can be simply integrated to 

PointPillars object detection pipeline, and reach improved 

outcomes on dataset. We believe that the offered 3D EIoU-

NMS loss function will be of great value to bounding boxes 

with small dimensions. In the future, we can test the new loss 

function on other object detection networks to evaluate its 

performance. 
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