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Abstract— In the area of computer vision, object detection 

using convolutional neural networks (CNNs) has become quite 

a popular procedure because of their effectiveness and 

simplicity. The loss function has a great influence on the average 

accuracy value of the CNN model’s detector results. An 

improved 3D efficient intersection over union (EIoU) loss 

function is proposed to improve the localization accuracy. The 

diagonal distance between bounding boxes’ corners and centers, 

with the dimensional change in boxes’ geometry sides, are used 

for matching between the 3D predicted bounding box with the 

3D ground truth bounding box. By taking the geometry sides 

change and diagonal distance between the 3D predicted and 3D 

ground truth boxes, a great influence on the localization 

accuracy is generated. For the network model, the localization 

accuracy is improved because of the strength of diagonal 

distance and geometry sides’ adjustment. Utilizing the one-stage 

object detector 3D YOLO v4 and applying the 3D EIoU 

experimentally on the KITTI dataset, the findings demonstrate 

the effectiveness of the 3D EIoU in improving the accuracy of 

localization for the network model. Compared with 3D GIoU, 

the proposed EIoU enhances the average precision (AP) value 

by 0.24% and AP70 by 1.179% in the car class, AP by 0.578%, 

and AP55 by 6.022% in cyclist class, and AP by 0.1531% and 

AP30 by 2.548% in pedestrian class. 

Keywords—object detection, localization accuracy, 3D 

bounding box regression, 3D loss function, deep learning 

I. INTRODUCTION  

Convolutional neural networks (CNNs) are used mainly 

in object detection. When using CNN for regression or 

classification processes, the loss function estimates the 

degree value of inconsistency between the model's predicted 

and actual values. The main objective of model training is to 

minimize the loss function by using the optimization 

technique to calculate the model parameters. The loss 

function affects the working action of different object 

detectors, where the loss function determines the model's 

optimal value.   

       Bounding box regression and classification are two 

subsections of the loss function. For object’s localization and 

identification, it is essential to calculate the bounding box 

regression loss. In recent years, deep CNNs showed high-

quality performance in predicting the 2D bounding box of 

candidate objects. Despite their state-of-the-art performance, 

those detectors have inherent limitations for specifying the 

object's geometry, which misled the localization and 

classification process. For example, using a 2D bounding box 

in the autonomous driving field will increase the misdetection 

process [1]. Knowing two dimensions for cars on the road is 

insufficient to measure the distance between vehicles, 

therefore there is a significant need to know the 3D 

dimensions for objects increased in the autonomous driving 

field. In contrast to the 2D box, which only needs five 

variables, the regression of 3D bounding boxes needed seven 

variables, including the location points (x, y, z), size (w, l, h), 

and the orientation angle θ.  

In the object detection process, bounded box regression 

is an important technique used to calculate the object 

localization performance. On the other hand, most old loss 

functions for bounding box regression have two specific 

drawbacks : (i) Both 3D IoU and 𝐿𝑛 -norm loss functions, 

were inefficient to describe the objective of bounding box 

regression, which made the convergence between prediction 

and target boxes slow with inaccurate regression results [2]; 

(ii) the imbalance problem in bounding box regression 

ignored by most of the loss functions, where a large number 

of anchor boxes, that have small overlaps with the target 

boxes made most of the contribution to the optimization of 

bounding box regression [3].  

We proposed an efficient 3D IoU loss (EIoU) to obtain a 

faster convergence speed and better regression results to 

solve the above issues. The 2D EIoU has a penalty term for 

two sides in previous work [4]. On the other hand, in this 

study, we add an additional side dimension to improve the 

bounding regression outcome results. Taking the three sides 

of the 3D box is an efficient way to consider the slight overlap 

of anchor boxes and get the correct results from the bounding 

regression process. The main contributions of this paper are: 

(1) An efficient 3D Intersection Over Union (EIoU) loss 

equation is designed, which explicitly finds the 

discrepancies of three geometric elements in the 

bounding box regression, i.e., the overlap area, the 

center point distance, and the box sides' change. 

(2) Evaluate the performance of 3D EIoU loss performance 

when it incorporates into a 3D YOLO v4 object 

detection model, achieving notable performance. 

The paper is arranged as follows. The related work is 

explained in Section II. The comparison methodology of the 

loss functions’ value in different situations is discussed in 

Section III. The experiment and exploration for object 

detection illustrated in Section IV, followed by conclusion.  

 

II. RELATED WORK 

         The previous 3D object detecting techniques and 3D 

IoU loss function for bounding box regression are discussed 

in this section. With rapid development in many fields of 

automation, manufacturing, and so many others, 3D object 

detecting has become more and more important. An RGB  
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depth camera could be used, which give the user good 

information to obtain 3D geometry for an object. 

Additionally, LIDAR has better performance for getting 3D 

objects with accurate measurement. The generated points 

cloud is converted into 2D, whereas the disorganized point 

cloud is converted to regular grids. These object detection 

methods are called grid-based methods; any CNN can process 

the common data after being converted to grids. The work in 

[1][5]converted the point cloud data to a 2D bird’s eye view 

map with a sequence of 3D bounding boxes for the 3D 

regression process. Like in [6][7], other methods stated that 

many layers for feature extraction effectively extract features 

from point cloud; these methods are named point-based. The 

3D CNN was used for the final 3D prediction from the 

obtained regular feature map. Some methods like F-PointNet 

[8] and the work [9] used partially the point cloud data 

gathered by 2D ROI region. PointRCNN [10] and STD [11] 

used the point cloud data for detecting the 3D object directly. 

All the above methods used ℓ𝑛 loss function, the IoU loss has 

been added to STD, significantly improving classification 

and notable regression improvement.  

      Many types of research related to the IoU-loss function 

are popular for 2D object detection, [2] stated the IoU loss 

function first for detection. IoU-Net [12] showed notable 

performance improvement by changing the classification 

score with the IoU value for ranking in NMS. The work [3] 

proposed a generalized type of IoU, to compensate for 

weaknesses of the IoU algorithm. Distance-IoU was 

proposed in [13] to perform the regression of bounding boxes 

and decrease the center distance between the two boxes. 

Complete IoU (CIoU) also considers the two-side geometry 

measurement with the midpoint distance between the two 

bounding boxes. The above techniques, significantly 

improved performance for 2D object detection, however they 

are rarely employed for 3D object detection. The work [14]is 

the single method that discusses the 3D IoU loss function, 

which solves the forward and backward problems for two 

rotating bounding boxes. This 3D IoU method did not solve 

the slow convergence speed and incorrect regression. Our 

work also focuses on the loss function model in 3D object  

 

 

 

 

 

 

detection perspectives. However, by adding three sides of the 

two bounding boxes to calculate the proposed efficient IoU 

(EIoU) function, the matching process will be faster and 

achieves favorable performance 

III. METHOD 

       The previous study [4] defined a 2D EIoU loss function, 

however, in this work we propose an efficient version of 3D 

IoU loss, i.e., the 3D EIoU loss. This 3D EIoU loss function 

can handle three axis-aligned bounding boxes, where the 

EIoU loss is defined as follows,  

                          𝐿𝐸𝐼𝑜𝑈 = 𝐿𝐼𝑜𝑈 + 𝐿𝑑𝑖𝑠 + 𝐿𝑎𝑠𝑝 ,                     (1) 
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where 𝐶𝑤, 𝐶ℎand 𝐶𝑙  values are the width, height, and length 

of the smallest enclosing box containing the two boxes. The 

above loss equation is divided into three parts: the IoU loss 

𝐿𝐼𝑜𝑈 , the distance loss 𝐿𝑑𝑖𝑠  and the aspect loss 𝐿𝑎𝑠𝑝 . The 

CIoU loss and DIoU loss characteristics can be observed in 

the above equation. The disparity between the width, height, 

and length of the target boxes and the anchor boxes is 

immediately reduce by the EIoU loss, resulting in a quicker 

convergence rate and improved localization.  

        It is crucial to look at how the loss values for the IoU, 

GIoU, and EIoU algorithms relate to one another. As 

illustrated in Fig.1, the predicted bounding box and the 

ground truth box both have three dimensions: width, length, 

and height. The two 3D bounding boxes have three geometry 

values; these sides are used for calculating the IoU, GIoU, 

and EIoU values to see the relationship among these losses in 

three different positions. Table I, contains the values for these 

losses in various positions between the bounding boxes: 

intersection, separation, and inclusion. 

 
Table I. 3D loss functions, at three different places 

Loss Intersection Separation Inclusion 

𝓛𝑰𝒐𝑼 0.924 1 0.83 

𝓛𝑮𝑰𝒐𝑼 1.11 1.563 0.83 

𝓛𝑬𝑰𝒐𝑼 1.913 1.835 1.54 

 



 

         As can be understood from table I, the value for IoU 

loss function is equal to 1 when the two bounding boxes are 

separated; this situation is shown in Fig.1(b). In other cases, 

the IoU loss function is bigger than 0.5, as shown in Fig.1(a) 

and (c). These two cases offer a good performance, and a 

matching process between the bounding boxes happen. The 

relationship between the GIoU and IoU losses is presented 

when the two boxes are in an inclusion situation (Fig.1 (c)), 

the GIoU loss degenerates to IoU loss. In Fig.1 (a) and 

Fig.1(b), GIoU loss value is bigger than IoU loss. The 

relationship between EIoU, GIoU and IoU loss functions 

shows that the EIoU loss values are bigger than GIoU and 

IoU loss functions. This indicates the better performance for 

the EloU loss function, where the change in three geometry 

sides for the two bounding boxes are considered during the 

matching process. This lead to a faster convergence speed. In 

this paper, 3D EIoU algorithm is designed to calculate the 

loss EIoU value as presented in Algorithm 1. 

 

 

IV.  EXPERIMENTATION PROCESS AND RESULTS 

        All detections are trained, and all outcomes are 

reported, on the KITTI dataset [15] [16]. The proposed 3D 

EIoU algorithm evaluated by applying it to the 3D YOLO v4 

model [17], including one-stage object detection instructions.  

 

A.   Experimental Setting 

The experimental condition in this work is organized as 

follow: laptop with Asus Ryzen 9 CPU (4.6 GHz, 8 cores), 

40 GB RAM, Ubuntu 20.04 64-bit operating system. 

NVIDIA GeForce RTX 3070 laptop GPU 8GB, Cuda V11.1.  

 

B. Dataset and Training 

         The KITTI benchmark dataset [10] is used to examine 

our proposed loss function. This dataset holds 7481 training 

and 7518 testing files, including images, point cloud data, 

calibration, and label files. The image and point cloud data 

files contain cars, cyclists, and pedestrians. Using a resolution 

of 0.1 m per pixel, the point cloud projected in 2D space as a 

grid map. The grid map that resulted from the LIDAR space 

is 30.4 meters to the right, 30.4 to the left and 60.8 meters 

forward, with 0.1 resolution, the above range results in an 

input shape of 608x608 per channel. The 3D YOLO v4 model 

is used in this experiment, it is one of the most common 

neural network models. This model has three components: 

Backbone, Darknet, Neck, and Head. The Darknet training 

protocol is used with iteration set to 100K. 

 

C. Analysis Process 

The results are reported by measuring the AP value over 

three label classes for a certain IoU threshold value. These 

three class labels are car, cyclist, and pedestrian. The AP is 

used to measure experiment performance, where AP= 

(AP20+AP30+…+AP90)/12, which is typically the average 

of AP values across several different values of 12 IoU 

thresholds, i.e., IoU= {0.2,0.3 ...;0.9}. The values for the AP 

are reported and compared for EIoU and GIoU training 

processes. From Table II, ℒ𝐸𝐼𝑜𝑈  gains of 84.65 % AP and 

91.59%  AP70 can be observed. Taking ℒ𝐺𝐼𝑜𝑈  as the 

evaluation loss function, the AP value improved to its highest 

level by 0.2444% and 1.179% respectively. The 

ℒ𝐸𝐼𝑜𝑈  achieves the highest value, 91.59% AP70, which is 

higher than the ℒ𝐺𝐼𝑜𝑈 value of the 90.41% AP70, indicating 

that the good influence of three sides’ change between the 

prediction and the ground truth's 3D bounded boxes on 

improving the detection accuracy for car object. For cyclist 

class, ℒ𝐸𝐼𝑜𝑈 gains of 61.24 % AP and 83.57% AP55 . The AP 

value improved to its highest level by 0.578% and 6.022% 

correspondingly. The ℒ𝐸𝐼𝑜𝑈  achieves the highest value, 

83.57% AP55, which is higher than the ℒ𝐺𝐼𝑜𝑈  value of the 

77.55%  AP55, indicating that the 3D EIoU loss algorithm 

can improve detection accuracy for cyclist objects.  

        For pedestrian class, ℒ𝐸𝐼𝑜𝑈  gains of 41.83%  AP and 

81.77% AP30. The ℒ𝐸𝐼𝑜𝑈   value increases the detection's 

precision by 0.1531% AP and 2.548% AP30. The ℒ𝐸𝐼𝑜𝑈  

algorithm achieves the highest level of performance 

improvement, with 3.133%  AP70 and 2.821%  AP65, 

slightly higher than ℒ𝐺𝐼𝑜𝑈.  

       By examining the results in Table II, we discover that the 

ℒ𝐸𝐼𝑜𝑈  gets the highest scores in car and cyclist classes. 

However, ℒ𝐸𝐼𝑜𝑈  does not perform well in some places and 

ℒ𝐺𝐼𝑜𝑈  obtains better performance by taking into account the 

smallest 3D box containing the ground truth and predicted 3D 

boxes. In some places it is easy to find that the average 

precision of  ℒ𝐸𝐼𝑜𝑈  is significantly higher than  ℒ𝐺𝐼𝑜𝑈 , as 

shown in Fig.3 and Fig.4. The average precision of ℒ𝐸𝐼𝑜𝑈   
decrease more slowly with the higher value for the IoU 

threshold which demonstrates the excellent performance of 

the network.  

 

Algorithm 1: 3D EIoU loss Calculation 

Input: Bounded Box of Ground truth  

𝑩𝒈𝒕 = (𝒙𝒈𝒕, 𝒚𝒈𝒕, 𝒛𝒈𝒕, 𝒘𝒈𝒕, 𝒍𝒈𝒕, 𝒉𝒈𝒕, 𝒙𝒄
𝒈𝒕

, 𝒚𝒄
𝒈𝒕

, 𝒛𝒄
𝒈𝒕

) 

Input: Bounding Box of Prediction 

 𝑩𝒑 = (𝒙𝒑, 𝒚𝒑, 𝒛𝒑, 𝒘𝒑, 𝒍𝒑, 𝒉𝒑, 𝒙𝒄
𝒑

, 𝒚𝒄
𝒑

, 𝒙𝒄
𝒑

) 

 

Output:𝓛𝑬𝑰𝒐𝑼 

1: If (𝑩𝒈𝒕 ≠ 𝟎) ∪ (𝑩𝒑 ≠ 𝟎) 𝒅𝒐 

2: 𝒄𝒘=(𝒙𝒈𝒕 − 𝒙𝒑) 

3: 𝒄𝒍 = (𝒚𝒈𝒕 − 𝒚𝒑) 

4: 𝒄𝒉 = (𝒛𝒈𝒕 − 𝒛𝒑) 

5: 𝒄𝟐=𝒄𝒘
𝟐 + 𝒄𝒍

𝟐 + 𝒄𝒉
𝟐 

6: 𝒑𝟐(𝒘𝒑, 𝒘𝒈𝒕) = (𝒙𝒄
𝒈𝒕

− 𝒙𝒄
𝒑

)𝟐 

7:𝒑𝟐(𝒍𝒑, 𝒍𝒈𝒕) = (𝒚𝒄
𝒈𝒕

− 𝒚𝒄
𝒈𝒕

)𝟐 

8: 𝒑𝟐(𝒛𝒑, 𝒛𝒈𝒕) = (𝒛𝒄
𝒈𝒕

-𝒛𝒄
𝒈𝒕

)𝟐 

9: 𝒑𝟐(𝒃𝒑, 𝒃𝒈𝒕)= (𝒙𝒄
𝒈𝒕

− 𝒙𝒄
𝒑

)𝟐 + (𝒚𝒄
𝒈𝒕

− 𝒚𝒄
𝒑

)𝟐 + (𝒛𝒄
𝒈𝒕

− 𝒛𝒄
𝒑

)𝟐 

10: 𝓛𝑬𝑰𝒐𝑼 = 𝟏 − 𝑰𝒐𝑼 +
𝒑𝟐(𝒃,𝒃𝒈𝒕)

𝒄𝟐
+

𝒑𝟐(𝒘𝒑,𝒘𝒈𝒕)

𝑪𝒘
𝟐 +

𝒑𝟐(𝒉𝒑,𝒉𝒈𝒕)

𝑪𝒉
𝟐 +

𝒑𝟐(𝒍𝒑,𝒍𝒈𝒕)

𝑪𝒍
𝟐  

11: else 

12:𝓛𝑬𝑰𝒐𝑼 = 𝟎 



 
 
Fig.2 Performance against the IoU threshold for car class 

 

 

 
 

Fig.3 Performance against the IoU threshold for cyclist class 
 

 
 

Fig.4 Performance against the IoU threshold for pedestrian class 

 

 

D. Analysis The Detection Results 

        By taking the sample from the KITTI dataset, Fig.5, 

Fig.6, and Fig.7 show the detection outcomes.  For RGB 

images, the 3D bounded boxes projected to their related 

images of the point cloud samples, 2D bounded boxes for 

point cloud data and 3D bounded boxes on the image. The 

image, and the associated point clouds in Fig.5, show typical 

car detection samples. The ℒ𝐸𝐼𝑜𝑈  can achieve superior 

detecting outcomes, either it is distance or nearby vehicles, 

even though reachable points relating to a long-distance 

vehicle are little.  

 

 
 
Fig.5 Vehicle object detection by using EIoU loss 
 

Images, and the related point cloud’s outcomes, in Fig.6 and 

Fig.7 showed, the detecting results of cyclists and 

pedestrians, respectively. There are comparatively a small 

number of cyclists and pedestrians in the training data set 

compared with vehicles. Additionally, the size value of 

cyclists and pedestrians was smaller; each object contain less 

points, which mistakenly confuse with other objects of 

similar size. 

 

 
 
Fig.6 Cyclist with blue label, object detection using the EIoU loss 

 



 

 

 
 
Fig.7 Pedestrian object detection using the EIoU loss 

 

V. CONCLUSION 

        To accelerate the convergence process for matching the 

3D ground truth bounded box with the 3D predicted box, 

three sides' terms in the ℒ𝐸𝐼𝑜𝑈 of the bounded box regression 

are employed in this study. These sides term ratios more 

comprehensively consider the relationship between the 3D 

ground truth bounded box with the 3D predicted box. The 

loss function, which includes the sides’ term, is called 3D 

ℒ𝐸𝐼𝑜𝑈 . Testing experiments on the KITTI dataset have 

showed the usefulness of 3D ℒ𝐸𝐼𝑜𝑈 in enhancing the 

localization accuracy value of the one-stage target detector, 

the 3D YOLO V4 model. The EIoU loss function improved 

the position localization of the 3D predicted bounding box. 

The calculated outcomes of 3D ℒ𝐸𝐼𝑜𝑈function, show that our 

algorithm is essential in the 3D field. For future works, this 

loss function could be verified in other neural network 

models to examine the proposed function’s usefulness better. 
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