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Abstract: Multi-object tracking (MOT) is a prominent and important study in point cloud processing
and computer vision. The main objective of MOT is to predict full tracklets of several objects in
point cloud. Occlusion and similar objects are two common problems that reduce the algorithm’s
performance throughout the tracking phase. The tracking performance of current MOT techniques,
which adopt the ‘tracking-by-detection’ paradigm, is degrading, as evidenced by increasing numbers
of identification (ID) switch and tracking drifts because it is difficult to perfectly predict the location
of objects in complex scenes that are unable to track. Since the occluded object may have been visible
in former frames, we manipulated the speed and location position of the object in the previous
frames in order to guess where the occluded object might have been. In this paper, we employed
a unique intersection over union (IoU) method in three-dimension (3D) planes, namely a distance
IoU non-maximum suppression (DIoU-NMS) to accurately detect objects, and consequently we use
3D-DIoU for an object association process in order to increase tracking robustness and speed. By
using a hybrid 3D DIoU-NMS and 3D-DIoU method, the tracking speed improved significantly.
Experimental findings on the Waymo Open Dataset and nuScenes dataset, demonstrate that our
multistage data association and tracking technique has clear benefits over previously developed
algorithms in terms of tracking accuracy. In comparison with other 3D MOT tracking methods, our
proposed approach demonstrates significant enhancement in tracking performances.

Keywords: multi-object tracking; point cloud; 3D-DIoU; DIoU-NMS; multistage data association;
tracklets; motion prediction

1. Introduction

An important challenge in computer vision study is multi-object tracking (MOT),
which identifies and keeps track a unique identification (ID) for each object of interest in a
point cloud series while predicting the locations of all objects. MOT has many important
theoretical research implications and practical applications. Systems for visual security
surveillance, vehicle visual navigation [1], augmented reality [2], human–computer inter-
face, high senstitivity audio-visual (AV) [3] to name a few, all heavily rely on MOT systems
with well-behaved performances. There are several difficulties that can deteriorate tracking
performances in real-world applications. These difficulties include the way an object inter-
acts, occlusion, and how close certain objects are related to one another. These difficulties
lead to many unwanted detection mistakes and errors, including bounding box drift and
ID changes, which cause tracking performance to degrade severely. As a result, this work
proposes an improved and reliable MOT method for point cloud scenarios. Previously
developed three dimension (3D) multiple object tracking (3D MOT) algorithms [4–9] adopt
the tracking-by-detection pattern. Across frames, the tracklets depend directly on the 3D
bounding boxes from 3D detectors.
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In general, the concept of the tracking-by-detection algorithm consists of four modules:
(i) input detection pre-processing module, (ii) motion module, (iii) association module,
and (iv) managing tracklet life cycle. All objects of interest from the point cloud series
are determined using the detector. Then, the identical objects from the detector and
predicted motion model are associated using the metrics, which is established on features.
A continually updating tracklet set is created by connecting the same item in many point
cloud frames. In this procedure, the detector’s effectiveness and the performance of the data
association algorithm jointly impact the tracking accuracy and flexibility. This detection
process is normally evaluated using an intersection over union (IoU) metric.

The association results can be wrong when the input detectors are inaccurate. How-
ever, refining these detectors by using the non-maximum suppression (NMS) technique
can improve the association. Additionally, we found that the association metric expressed
between two 3D bounding boxes should be designed properly. Neither generalized IoU
or GIoU [10] nor L2 [11] work well. The inference speed of the tracking system is signifi-
cantly influenced by both the detector and the data association. Therefore, the multistage
association process between predictions and tracklets can express the existence of the
objects. Based on these findings, using distance-IoU (DIoU) over the tracking pipeline
can significantly improve the solutions. In order to tackle 3D MOT issues, we propose an
improved DIoU method in this paper. Consequently, we utilize Waymo Open Dataset [12]
and nuScenes [13] in order to evaluate and verify our proposed algorithm. Our method
and contributions, in brief, are as follows:

• We added DIoU-NMS to 3D MOT tracking pipeline and analyze the performance;
• We proposed the use of DIoU for two-stage and multi-stage data association, which

showed competitive results on both Waymo Open Dataset and nuScenes;
• We used unmatched tracklets and unmatched detection from previous stages for data

association in the next stage, and the verification results on Waymo Open Dataset
show better performance for cyclist objects.

By using DIoU in the tracking pipeline, we overcome premature tracklet termination
where the tracking framework depends on prediction position for invisible objects. Previous
work in [14] used GIoU for the tracking process, which terminates an unassociated tracklet.
Instead, we used DIoU to maintain the unassociated tracklet by using its predicted position.
Therefore, when a temporarily invisible object reappears, it can be associated with its
original predicted position.

2. Related Work

Point clouds are used in 3D multi-object tracking (MOT), which works in conjunction
with the detection process of 3D objects in the autonomous driving challenge. The task
of connecting objects together in a complete sequence is handled by 3D MOT, which is
sensible of object location in all point cloud frames. In this process, temporal consistency is
vital in addressing the tracking issue. The difference between a 3D MOT system and a 2D
MOT system is that 3D MOT system uses a 3D space for the detecting procedure. Recent
studies have been using 3D point cloud data for MOT applications, even without the use of
extra features such as RGB data.

2.1. Two-Dimensional MOT Methods

Based on data association, recent 2D MOT systems can be categorized into batch and
online techniques. The batch approach utilizes a full sequence search for a global optimum
association. Meanwhile, authors in [15] proposed a TADT system in order to learn target-
aware features for better recognition of the targets under variance appearance changes. While
trackers use a maximum overlap technique based on IoU values to solve this concern, there
are imperfections in the IoU values that make it impossible to continuously optimize the
objective function when a provided bounding box is completely contained within or without
another bounding box; this makes accurate estimation of the target state extremely difficult.
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Meanwhile, authors in [16] designed a tracking method based on a distance-IoU
(DIoU) loss for an estimation and classification of a target. Learning to track procedures
used in many fields, a method in [17] employed MOT for guiding drones and controlling
them. Correspondingly, an MOT is used in unmanned aerial vehicles (UAVs) for collision
prevention in [18]. Detecting lanes in driver assistance systems is challenging under bad
climatic changes, hence a method [19] introduced a two-tier deep learning-based lane
detection system for many images at a different number of weather situations. Texture
features are extracted and an optimized deep convolution network is used for road and
lane classification. On the other hand, authors in [20] proposed tracking algorithms that
measure the dynamic similarity of tracklets and recover missing data due to long occlusions
due to motion dynamics that provide strong cues while tracking targets with identical or
very similar appearance. However, the algorithms are limited to 2D objects.

However, detections from the previous frame and the current frame are accessible
to the tracker, the SORT method [21] proposed online tracking-by-detection, the tracker
component runs at 260 Hz for updating its states which is useful for real-time applications.
In contrast, our work uses 3D point cloud data, and the system works near real-time with
10 Hz on Waymo Open Dataset and 2Hz on nuScenes.

Several online 2D trackers [22–25] have suggested improved detection qualities and
utilize the tracking-by-detection paradigm. Unfortunately, due to scale variance, the object
items in RGB pictures vary in size, making association and motion models more difficult.
However, 2D MOT may readily make use of rich RGB information and employ appearance
models based on online learning process [24,26–28]. The design of MOT frameworks should
be compatible with data taken from LiDAR or a camera.

2.2. Three-Dimensional MOT Methods

Previous research in 3D multi-object tracking that followed the tracking-by-detection
paradigm often solved tracking problems by using a bipartite graph-matching mechanism
on top of ordinary detectors. Depending on early works on 2D MOT [13–15], many strate-
gies emphasize enhancing the relationship between detection and tracklets by simulating
their movements or attendance, or a mix of the two. A state of Kalman filter in [29] is
specified on the 2D plane. An AB3DMOT method [7] offers a baseline technique built
on the PointRCNN detector [30] that combines the 3D Kalman filter with the Hungarian
algorithm [31]. While AB3DMOT utilized 3D IoU for the association process, Chiu et al [32]
employed Mahalabnobis distance [10] as an alternative. On the other hand, GIoU [33]
is used in Simple Track [14] for the 3D association. The 2D velocity of the detected box
is predicted by learning in CenterPoint [8] followed by CenterTrack [34] and performed
simple point–distance corresponding. In addition, an aspect of labeling for 3D objects in
self-driving vehicles are discussed in [35].

To further prevent misperception throughout the association procedure, GNN3DMOT [36]
used a Graph Neural Network to collect appearance and motion data in order to establish
feature interaction between objects. Authors in [37] proposed a probabilistic multi-modal
structure that covered trainable sections for 2D and 3D object feature fusion, distance space
arrangement, and trajectory creation. A method in [37] joined 2D and 3D object indication
gained from 2D and 3D detectors. The authors in a single graph form combined the prediction
models with object identification characteristics [9]. In this paper, on the other hand, we used a
simple DIoU metric for data association.

Behind early knowledge in 2D MOT [38–40], the preceding works in 3D MOT [5,7–9,24,26]
frequently implemented a counting-based method for tracklet life cycle management. Different
tracklets are created for each frame with detected objects that are not related to any current
tracklet. The tracklets that lose their targets for a number of frames (usually fewer than 5) are
terminated. Authors in [4,27] recommended that tracks are initiated and terminated based
on their confidence score value, which is calculated from the confidence measurement of
their related detections. Nevertheless, predictors that are not related with fresh detections are
permanently terminated. In contrast, we show that by positively anticipating and conserving
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the object-predicted box, predictors that have lost their targets may be appropriately preserved
for future association.

3. Materials and Methods

In this section, a simple tracking with the PointPillars and a motion prediction tech-
nique is proposed, and the workflow of tracking procedure is shown in Figure 1. The
tracking process consists of the following parts:

1. Detection: for this step, the bounding boxes are selected from the detector, as shown
in Figure 2;

2. Selected Detection: by applying NMS process the number of bounding boxes de-
creased and the unwanted boxes are removed;

3. Tracklets, Prediction, and Motion Update: all these processes are related to each other
where Kalman filter is used, as illustrated in Figures 3 and 4;

4. Multi-Stage Association: in this step the detectors in the present frame are associated
with the tracklets from the previous frame. The unmatched prediction and tracklets
are associated in another stage. Three-dimensional GIoU and DIoU association metrics
are used in this work is coupled with Hungarian algorithm;

5. Motion update and Life Cycle Management: the creation and termination of the
tracklets are updated and are determined in this step, and the final tracklets are shown
in Figure 5.
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3.1. Adding 3D DIoU Function

In this part, we examine and enhance the detection and multi-stage association mod-
ules by including a 3D DIoU model. In this work, we revised the NMS and its association
function for bounding boxes of the conventional tracking method to enhance the tracking
capability of multiscale and occluded objects.

The association speed and performance of the object tracker are directly dependent
on the values of the association function. To determine the multiple object tracking (MOT)
value, it is necessary to calculate the correspondence among the bounding boxes using
the tracking method. In order to determine the volume of union between two bounding
boxes, the intersection over union (IoU) metric [41] are used, and the consistent association
function is stated as follows:

IoU =
|B1 ∩ B2|∣∣∣B1 ∪ B2|

, (1)

where B1 and B2 are 3D bounding boxes; |B1 ∩ B2| indicates the volume of intersection of
B1 and B2; and |B1 ∪ B2| indicates the volume of the union of B1 and B2. The IoU is equal
to 0 when there is no intersection between the two 3D bounding boxes. In this case, the
tracking process cannot continue.

As a solution for this gradient vanishing matter, generalized intersection over union
(GIoU) equation [33] is used in the tracking technique, which is stated as follows:

GIoU = IoU − |D||C| , (2)

where C is the smallest volume that covers B1 and B2; let D = C/(B1 ∪ B2), the C = B1 ∪
B2 ∪D; |C| and |D| stand for the volume of C and D, respectively. When B2 box contains the B1
box, then the variance between each B1 box and the B2 box are the same, GIoU, in this case,
degenerates into IoU, without any tracking relationship.

IoU and GIoU only take into account the overlapping volume, and the associated
functions have two drawbacks, including delayed corresponding and incorrect association.
However, distance intersection over union (DIoU) uses the standardized distance among
the centers of the B1 and B2 bounding boxes. The following definition relates to this
association function [42]:

DIoU = IoU − d2

c2 , (3)

where d is the Euclidean distance length between the center points of the B1 and B2
bounding boxes; c is the diagonal length of the smallest enclosing box that encompasses
the two boxes. The DIoU function causes the model to acquire quick association if the two
boxes are in either the horizontal or vertical direction at the same time. Directly reducing
the normalized distances between central point’s using the DIoU function leads to a faster
convergence rate [42] and more precise association. The IoU, GIoU, and DIoU, as expressed
above, are used to describe the association between any two bounding boxes. The algorithm
of 3D DIoU metric is defined as Algorithm 1.
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Algorithm 1. 3D Distance Intersection Over Union Function

Input: the information data of B1 and B2 bounding boxes:
B1 = (x1, y1, z1, l1, w1, h1, θ1), B2 = (x2, y2, z2, l2, w2, h2, θ2)

Output: 3D DIoU Association Metric
1. Determining the Projections B′1 and B′2 of B1 and B2on the bird’s eye view,

respectively B′1 =
(

x1
1, y1

1, x2
1, y2

1, θ′1
)
, B′2 = (x1

2, y1
2, x2

2, y2
2, θ′2)

2. A1 ← the area of the 2D box B′1
3. A2 ← the area of the 2D box B′2
4. I2D ← intersection between B′1 and B′2
5. U2D ←union between B′1 and B′2
6. Ih ← the height of the intersection between B1 and B2
7. Uh ← the height of the union between B1 and B2
8. Iw ← the width of the intersection between B1 and B2
9. Uw ← the width of the union between B1 and B2
10. Il ← the length of the intersection between B1 and B2
11. Ul ← the length of the union between B1 and B2
12. Iv ← the volume of the intersection between B1 and B2
13. Uv ← the volume of the union between B1 and B2
14. dx ← the center distance for (x1 − x2 )
15. dy ← the center distance for (y1 − y2 )
16. dz ← the center distance for (z1 − z2 )
17. d2 ← the diagonal distance between B1 and B2
18. c2 ← the diagonal distance for the smallest enclosing box that encompasses

between B1 and B2
19. If I2D ≤ 0 :

Iv = 0;
else:
If Ih ≤ 0 :

Iv = 0;
else:

Iv = I2D X Ih;
20. d2 = d2

x+d2
y+d2

z ;
21. c2 = U2

w+U2
I +U2

h ;
22. IoU3D = Iv

Uv
;

23. DIoU3D = IoU3D − d2

c2

3.2. Non-Maxamium Suppressing (NMS) Upgrade to DIoU-NMS

To locate local maximum and to eliminate non-maximum bounding boxes, the NMS
approach is used. Most object-tracking systems use NMS as a pre-processing stage, which is
often used to choose the bounding boxes before starting the tracking operation. Depending
on the score for classification confidence, which is the foundation of the original NMS,
the bounding box that has the highest confidence score can be maintained. Since IoU
and classification confidence scores are typically not strongly correlated, it is difficult to
pinpoint many classification labels with a high number of confidence scores. When using
the tracking method with the original NMS technique, analysis is only performed over
overlapping regions, increasing the likelihood of missing and false detection, specifically in
scenes with extremely overlapping objects.

We use DIoU-NMS to increase the detection efficiency for the occluded object. DIoU-
NMS uses DIoU as a tool for suppressing the redundant bounding boxes, in contrast to the
original NMS, which uses IoU as the criterion. DIoU-NMS takes into account the distance
length between the center points of the two bounding boxes in addition to the overlapping
area. The DIoU-NMS is stated as

si =

{
si, IoU − RDIoU(M, Bi) < ε
0, IoU − RDIoU(M, Bi) ≥ ε

, (4)
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where si stands for the score of classification confidence; IoU is stated in an Equation (1); ε
denotes the value of NMS threshold; M represents the highest-scoring bounding boxes; and
Bi is the pending bounding box. When conducting DIoU-NMS, the distance between the
centers of two bounding boxes is taken into account concurrently with IoU. The distance is
indicated by RDIoU and the equivalent equation is as follows:

RDIoU =
p2(b1, b2)

c2 (5)

where p2 denotes the length of the central distance measured between the bounding box
b center point and the bounding box b2 ones; c2 is the smallest box’s diagonal, which
contains both boxes.

4. Results
4.1. Datasets

There have been several MOT datasets recommended and used during the last few
years. Waymo Open Dataset [12] and nuScenes [13] are the most commonly used and most
considerable benchmark for MOT. Waymo Open Dataset (WOD) includes a perception
dataset and a motion dataset. The total number of scenes in the dataset is 1150, divided into
150, 202, and 798 scenes for testing, validation, and training, respectively. While the motion
dataset comprises 103,354 sequences, the perception dataset has 1950 lidar sequences that
have been annotated. Each sequence is recorded for 20 s at a sample rate of 10 Hz. For
each frame, point cloud data and 3D ground truth boxes for vehicles, pedestrians, and
cyclists are provided. By using the evaluation metrics stated in [12], we recorded multiple
object tracking accuracy (MOTA), multiple object tracking precision (MOTP) [43], Miss,
Mishmatch, and false Positive (FP) for objects with the L2 diffuclty level.

NuScenes [13] provides ground truth 3D box annotations at 20 frames per second and
LiDAR scans at 2 frames per second (fps) for a total of 1000 driving sessions. We report
identity switches (IDS), AMOTA [7], and MOTA for nuScenes. AMOTA, the average value
of MOTA, serves as the main indicator for assessing 3DMOT on nuScenes, is created by
merging MOTA over several recalls. Meanwhile, AMOTP, the average value of MOTP,
indicates an error value for the association process. Hence, the value for MOTP and AMOTP
should be kept as small as possible.

4.2. DIoU-NMS Results

Our approach aims to increase the precision without considerably reducing the recall.
We apply a strict DIoU-NMS to the input detections, and it is found that the ID switch
only recorded 479 switches, in comparison with the IoU method, which is 519, as shown in
Table 1.

Table 1. NMS for IoU and DIoU in the detection process with GIoU in association two stage.

NMS Metric AMOTA AMOTP RECALL MOTA ID Switch

IoU 0.687 0.573 0.725 0.592 519
DIoU 0.688 0.573 0.722 0.592 479

In addition, when DIoU-NMS is applied to the Waymo Open Dataset, the MOTA is
higher than that resulting from IoU-NMS. Similarly, the mismatch value improved and
reached 0.077% for vehicle class, as in Table 2. Meanwhile, MOTA results reached 51% and
the mismatch value is equal to 0.4% for pedestrian objects, as shown in Table 3.
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Table 2. Comparison of the tracking results for vehicle objects using different NMS metrics on the
validation set of Waymo Open Dataset.

NMS Metric MOTA MOTP Miss Mismatch (%) FP

IoU 0.544 0.168 0.355 0.08 0.099
DIoU 0.547 0.1678 0.354 0.077 0.097

Table 3. Comparison of the tracking results for pedestrian objects using different NMS metrics on the
validation set of Waymo Open Dataset.

NMS Metric MOTA MOTP Miss Mismatch (%) FP

IoU 0.505 0.311 0.397 0.45 0.092
DIoU 0.510 0.311 0.388 0.40 0.097

4.3. Association Results

We used 3D box detection from the CenterPoint method as the input data. To select
boxes with scores higher than 0.7 on the Waymo Open Dataset, 3D IoU-NMS was set to 0.7.
To associate between detection and prediction boxes, we used two-stage data association,
namely 3D GIoU and DIoU. In this case, we associated the detection and prediction boxes
by using DIoU in the first stage, then we re-associated again any un-associated boxes with
DIoU for the detection and tracklets in the second stage. A similar second stage approach
was applied to the third and higher order stage data association. The results for two-stage
data associations are shown in Table 4 for vehicle class, and Table 5 for pedestrian class
using the Waymo Open Dataset. The first row in both Tables 4 and 5 represents two-stage
data association results, where 3D GIoU metric is coupled with the Hungarian algorithm to
match between detections and tracklets. On the other hand, in the second row, we used 3D
DIoU instead of GIoU metrics.

Table 4. Comparisons for 3D MOT two-stage association on vehicle class, Waymo Open Dataset
validation set.

Two-Stage MOTA MOTP Miss Mismatch (%) FP

GIoU 0.5612 0.1681 0.3344 0.078 0.1035
DIoU 0.5892 0.1736 0.3165 0.1559 0.092

Table 5. Comparisons for 3D MOT two-stage association on pedestrian class, Waymo Open Dataset
validation set.

Two-Stage MOTA MOTP Miss Mismatch (%) FP

GIoU 0.5776 0.3125 0.3090 0.425 0.1091
DIoU 0.5972 0.3518 0.3360 0.96 0.0570

On the other hand, Table 6 represents a three-stage data association, where only the
cyclist class has a low false positive value (FP), the unmatched detections and unmatched
tracklets are associated using 3D DIoU coupled with the Hungarian algorithm.

Table 6. Three-dimensional MOT three-stage association on cyclist class, Waymo Open Dataset
validation set.

Three-Stage MOTA MOTP Miss Mismatch (%) FP

DIoU 0.6018 0.2855 0.3033 0.6613 0.0881
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4.4. Comparison with Previous Techniques

In this part, we incorporate the aforementioned methods into the combined DIoU-NMS
and DIoU data association in order to demonstrate how the performance can be enhanced.
Table 7 below shows our proposed 3D MOT trackers perform better than the baselines. In
the case of the Waymo Open Dataset, although the dimensions of vehicles and pedestrians
are much different, DIoU-NMS and two-stage DIoU data association are adequate and
appropriate for both vehicle and pedestrian objects due to high tracking performance
values, as the results are illustrated in Tables 7 and 8. The comparison for vehicle class in
the Waymo Open Dataset test set is tabulated in Table 7, which CenterPoint [8] recognitions
are utilized. For comparison, the results from AB3DMOT [7] and Chiu et al. [5] are also
presented. On the same note, Table 8 highlights the results for pedestrian class in the Waymo
Open Dataset test set. Meanwhile, the three-stage technique is only applicable to cyclist
objects due to the limitation of MOTA value computation for vehicles and pedestrians in
this multi-stage evaluation. DIoU-NMS shows effective results on the nuScenses dataset,
as shown in Table 9. In this case, CenterPoint [8] detection is utilized and compared. In all
tests, 2 Hz frame rate is used for the detection.

Table 7. Comparison on Waymo Open Dataset test set, vehicle class.

Method MOTA MOTP Mismatch (%)

AB3DMOT [7] 0.5773 0.1614 0.26
Chiu et al. [5] 0.4932 0.1689 0.62

CenterPoint [8] 0.5938 0.1637 0.32
This Work 0.6061 0.1738 0.094

Table 8. Comparison on Waymo Open Dataset test set, pedestrian class.

Method MOTA MOTP Mismatch (%)

AB3DMOT [7] 0.5380 0.3163 0.73
Chiu et al. [5] 0.4438 0.3227 1.83

CenterPoint [8] 0.5664 0.3116 1.07
This Work 0.615 0.329 0.521

Table 9. Comparison on the nuScenes test set.

Method AMOTA AMOTP MOTA ID Switch

AB3DMOT [7] 0.151 1.501 0.154 8987
Chiu et al. [5] 0.550 0.798 0.459 736

CenterPoint [8] 0.638 0.555 0.537 730
CBMOT [4] 0.649 0.592 0.545 517

OGR3MOT [9] 0.656 0.620 0.554 248
This Work 0.658 0.568 0.557 569

4.5. Comparison between GIoU and DIoU

As a comparison between the association metric between GIoU and DIoU, the score
threshold for selecting the boxes is set equal to 0.7. The GIoU association threshold is equal
to 1.5 and in the case of DIoU, it is equal to 1. Meanwhile, the NMS-IoU threshold is equal
to 0. The figures below show the associations between the detection results (green boxes)
and the predicted results (blue boxes). In this case, it can be seen that for both DIoU and
GIoU in the first stage, and for DIoU, the predicted box is preserved until the object is
detected again. Meanwhile, in the GIoU case, the predicted box is terminated when the
object is temporarily not observed, causing an identity switch, as illustrated in Figure 6. At
frame 9, which the figures shown in the first row, the detected box for vehicle ID number 2
(green box) is associated with its predicted box (blue box). The second row showed frame
11, which contains the tracklet for vehicle ID 10. We also use DIoU with a predicted box
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for vehicle ID 2 for association process. However, when we apply GIoU on the association
process, we obtained the tracklet only for vehicle ID number 10 and the predicted box for
vehicle ID 2 is terminated, as shown by the first column in the second row of Figure 6. At
frame 28, the tracklet for vehicle 3 and 11 and predicted position for vehicles 0, 1, 2, and 6
are shown in final row, second column when we apply DIoU on the association process.
On the other hand, when we apply GIoU on association process, we obtain the tracklet for
vehicle 3 and 11 only, and the predicted boxes are terminated for vehicles 0, 1, 2, and 6,
which lead to an increase in ID switch and lowering of the multiple object tracking accuracy
(MOTA) value.
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5. Conclusions

It was discovered that tracklet termination leads to identity switches in 3D MOT,
which are common and unresolved issues in recent 3D MOT studies. Therefore, in this
paper, we proposed a hybrid method of using DIoU-NMS and DIoU in order to improve
the association between tracklet and prediction boxes for objects. We found that by using
the combination of DIoU-NMS and DIoU, the identity switch cases can be reduced.

Additionally, we used DIoU for multi-stage association, which lead to an increase in
MOTA values for small objects on the Waymo Open Dataset. Experiment results show that
DIoU-NMS can significantly reduce the identity switches when it is used in selecting the
detectors for tracking. Our approach achieved 479 ID switches for the vehicle objects on
nuScense compared with 519 for GIoU only. While the mismatches were improved slightly for
vehicles and pedestrian objects, the MOTA results also recorded better performance in tracking
on the Waymo Open Dataset. Meanwhile, two-stage data association results demonstrated
significant improvements in MOTA values with 58.9% and 59.7% for vehicle and pedestrian
objects, respectively. The FP values also significantly improved, which are 11.1% and 47.7% for
vehicle and pedestrian objects, respectively. In addition, using DIoU for three-stage association
reduced the false positive detection as well as improved MOTA values.

In comparison to previous work, our method recorded significant improvement in ID
mismatches, which achieved at least 63.8% and 28.6% reductions for vehicle and pedestrian
objects, respectively. Similarly, test results on Waymo Open Dataset show MOTA values
for both vehicles and pedestrian objects reach over 60%, overtaking all previously issued
LiDAR-based methods. The results show great potential for future 3D MOT analysis and
can pave the path for many real-time 3D tracking-by-detection applications.
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