

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2022-2023

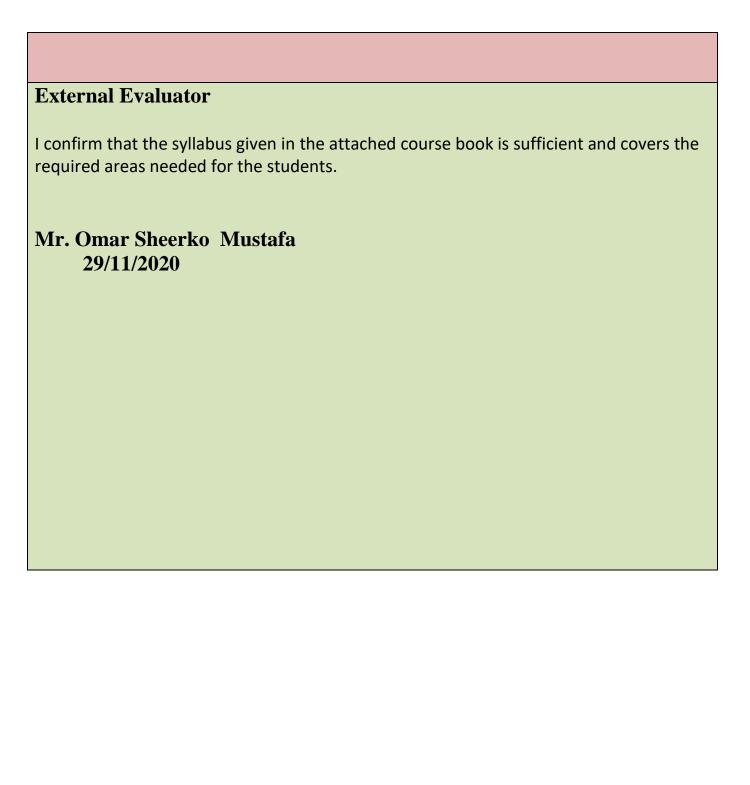
College/ Institute	Erbil Technical Engineering		
Department	Information System Engineering		
Module Name	Information Security		
Module Code	IS		
Degree	Technical Diploma Bachler 🗸		
	High Diploma Master PhD		
Semester	8		
Qualification	PhD		
Scientific Title	Lecturer		
ECTS (Credits)	6		
Module type	Prerequisite Core Assist.		
Weekly hours	4		
Weekly hours (Theory)	(2)hr Class ()Total hrs Workload		
Weekly hours (Practical)	(2)hr Class ()Total hrs Workload		
Number of Weeks	15		
Lecturer (Theory)	Dr. Sara Raouf Muhamad Amin		
E-Mail & Mobile NO.	Sara.muhamad@epu.edu.iq 07504881488		
Lecturer (Practical)	Mr. Ahmad Kaka Amin		
E-Mail & Mobile NO.	+964 750 7703575		
Websites			

Course Book

Course Description	In this course students will study how can secure information through transition. Information security is the theory and practice of only allowing access to information to people in an organization who are authorized to see it. During that year students will learn a plenty numbers of algorithms for encrypting and decrypting data.				
Course objectives	 Learning security fundamentals and some historic and modern encryption methods. Knowing how to protect the computers against viruses via anti-virus programs. Having good information about firewalls, internet security, viruses and anti-viruses. 				
Student's obligation	The attendance of students in lectures will have extra credit. He / she is required to continuously follow the lectures, submits homework and assignments. Expect quizzes any time. This is part of the assessment defined in section Assessment scheme.				
Required Learning Materials	Java or C++ or any Programming Language and a computer device				
		Task	Weight (Marks)	Due Week	Relevant Learning Outcome
Evaluation	F	Paper Review			
	As	Homework	5		
	sigr	Class Activity	2		
	Assignment	Report	5	5	Academic writing
	nt	Seminar	5	5	presentation

		Essay			
		Project			
	Qu	iz	8	1	
	Lab activity Midterm Exam theory practical		10		
			10	1	Student evaluation1
			15		
		al Exam theory ctical	20 20	1	Student evaluation2
	Tot	al	100	18	
	1- Our Course provides the students with a deep understanding of how modern cryptographic schemes work.				
Specific learning	2- The difference between different types of attacks against ciphers				
outcome:	3- A few historical ciphers, and on the way we will learn about modular arithmetic, which is of major importance for modern cryptography as well				
	4- Why one should only use well-established encryption algorithms				
Cryptography and Network Security: Principle Practice, Global Edition, W. WILLIAM STALLIN				•	
Course References:	2. Understanding Cryptography by Christof Paar · Jan Pelzl				
	3. An Introduction to Cryptography by Mohamed Barakat, Christian Eder, Timo Hanke September 20, 2018				
					Looming
Course topics (Theory)			Week	Learning Outcome	
An introduction to computer Security.			1	Why we need security?	
Access Control				2	Authentication schema

Introduction to Number theory	3	Divisibility, Euclidean Alg., prime number and Modular
		arithmetic
Symmetric Ciphers Classical Encryption Techniques	4	Caesar Cipher Hill Cipher
Substitution Techniques		
Transposition Techniques Rotor Machine	5	Column
Steganography		transposition
Block Ciphers and Data Encryption Standard	6	Traditional block Cipher DES
Advance Encryption Standard	7	AES algorithm
Asymmetric Ciphers	8	Public key cryptography RSA
Digital Signatures	9	Digital signature application
System Security	10	Introduction to system security
Viruses Worms	11	Malicious Software
Network Security	12	Protocol stack, application layer
Final Exam	13	Final evaluation
Questions Example Design		


Q1/ Define Information Security then write the basic principles of inform	ation security.
	(15 marks)

Q2/ Fill in the following blanks.

^{l.} — — — —	<u>c</u> ipher is a mec	hanism of using a single key	y for encryption/decryption.
The	and the	having the same size.	

- 2. In the substitution cipher from 26 English alphabet we can create _____ different keys.
- 3. For affine cipher we use two keys (a and b). The condition of choosing the key 'a' is __ _ _
- 4. Data Encryption Standard uses 16 rounds while Advanced Encryption Standard uses rounds __ _ _

(2 marks for each overall 20 marks) Q3/ Using Columnar transposition with key (front) to decrypt the message "TNRGDMEIRERWIHAOTEGNE". (15 marks) Q4/ In the DES if you have R0 = 1111 0000 1010 1010 1111 0000 1010 1010 $K1 = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010$ Write the first two steps in the F box (f function). (20 marks) Q5/ A- find the values of these numbers after applying them on S-box 1. 110010 S-box S₁ 2. 100111 S₁ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 14 04 13 01 02 15 11 08 03 10 06 12 05 09 00 07 3. 010101 00 15 07 04 14 02 13 01 10 06 12 11 09 05 03 08 4. 111000 04 01 14 08 13 06 02 11 15 12 09 07 03 10 05 00 15 12 08 02 04 09 01 07 05 11 03 14 10 00 06 13 (16 marks) B- briefly write Encryption Process of a typical round of AES encryption. (14 marks) Lecturer Name: Dr. Sara Raouf Muhamad Amin **Extra notes:**

