

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2020-2021 **College/Institute Erbil Technical Engineering** Department **Information Systems Engineering Computational Theory** Module Name **Module Code Computational Theory Technical Diploma** Bachler 🖌 Degree High Diploma Master PhD **Full year course** Semester Qualification PhD **Scientific Title** Lecturer **ECTS (Credits)** 6 Core 🗸 Module type Prerequisite Assist. Weekly hours 4 Weekly hours (Theory))hr Class (93.5)Total hrs Workload 2 Weekly hours (Practical) (68.5)Total hrs Workload 2)hr Class Number of Weeks 15 Lecturer (Theory) Dr. Sara Raouf Muhamad Amin E-Mail & Mobile NO. Sara.muhamad@epu.edu.iq 07504881488 Lecturer (Practical) Mr. Niyaz Muhamad Salih E-Mail & Mobile NO. +964 7504054557 Websites

Course Book

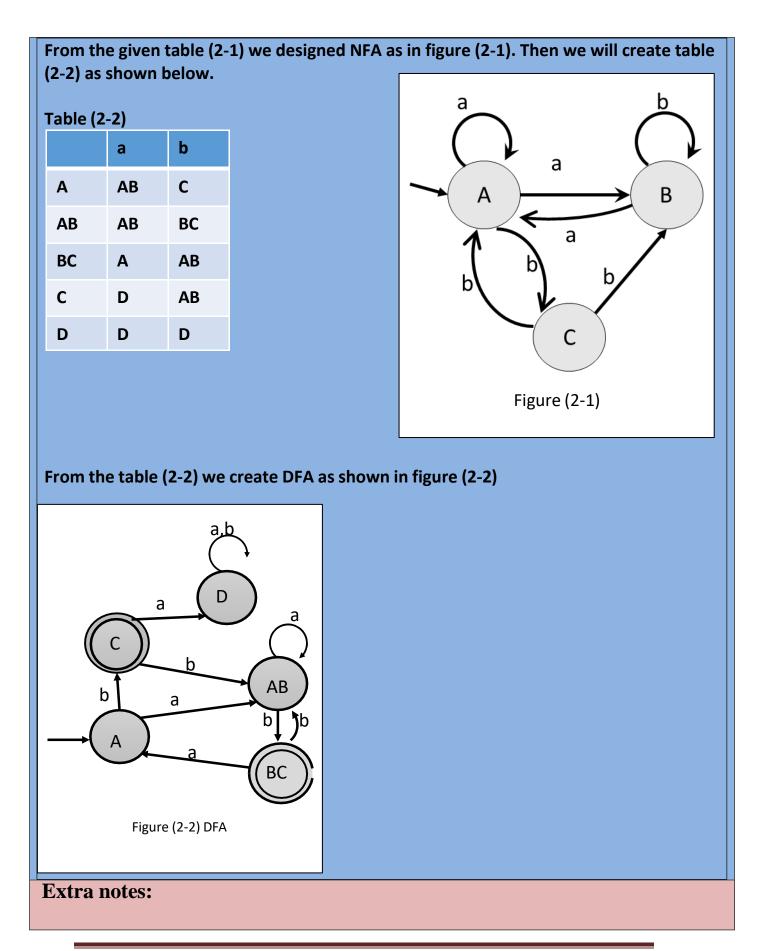
Course Description	This subject is a part of theory of computation. It comprises the fundamental mathematical properties of computer hardware, software, and certain applications thereof. In studying this subject we seek to determine what can and cannot be computed, how quickly, with how much memory, and on which type of computational model. The subject has obvious connections with engineering practice, and as in many sciences, it also has purely philosophical aspects.				
Course objectives	 Introduce students to the mathematical foundations of computation including automata theory; the theory of formal languages and grammars; the notions of algorithm, decidability, complexity, and computability. Enhance/develop students' ability to understand and conduct mathematical proofs for computation and algorithms. 				
Student's obligation	The attendance of students in both lectures and labs will have extra credit. He / she is required to continuously follow the lectures, submits homework and assignments. Expect quizzes any time. This is part of the assessment defined in section Assessment scheme .				
Required Learning Materials	Java or C++ or any Programming Language and a computer device				
Evaluation	Assignme	Task Paper Review Homework Class attendance	Weight (Marks) 5 2	Due Week 15 15	Relevant Learning Outcome
	me	Report	10	2	Academic writing

		Seminar	10	1	presentation	
		Essay				
		Project				
	Quiz		8	2		
	Lab.		15	1		
	Midterm Exam Final Exam Total		10	1	Student evaluation1	
			40	2	Student evaluation2	
			100	25		
	1- Students will learn several formal mathematical models of					
Specific learning outcome:	 computation along with their relationships with formal langua 2- In particular, they will learn regular languages and context f languages which are crucial to understand how compilers and programming languages are built 				and context free	
outcome.	3- Students will understand that there are limitations on what computers can do, and learn examples of unsolvable problems.					
	4- Students will learn that certain problems do not admit efficient algorithms, and identify such problems.					
Course References:	 Introduction to the Theory of Computation by Michel Sipser, 2nd Ed., Cengage Learning, 2005. Introduction to Automata Theory, Languages, and computations by John E. Hopcroft, Rajeev Motwani, Jeffery D. Ullman, 2nd Ed., 2001 					
Course topics (Theory)			Week	Learning Outcome		
Introduction to Computational Theory			1	General information about FF		
Deterministic finite automata (DFA) & Nondeterministic finite automata (NFA).			terministic	2	Design DFA and NFA	
Equivalence of DFA and NFA,				3	Convert NFA to DFA	

Myhill Nerode Theorem – Table Filling Method	4	Minimizing DFA
Finding a String in a text	5	How compiler work
Regular expressions	6	What is regular language
Midterm exam	7	Evaluation the students
Mealy Machine and Moore Machine	8	Design Moore Machine
Context Free Grammar (CFG)	9	Design CFG
Simplification of CFG	10	How to simplify CFG
Push Down Automata	11	Design an automata
Turing Machines and reduction	12	Turing Machines
Turing Machine Programming Techniques	13	Programming Turing Machine
Review and final exam.	14	Students final evaluation
Questions Example Design		

Questions Example Design

Q1/ design a DFA that accept any strings that ends with 00 or 11 Solution: Q: {q0, q1, q2, q3, q4}



Q2/ Find the equivalent DFA for the NFA given by M=[{A,B,C}, (a,b), δ , A, {C}] where δ is given by

Table (2	-1)
----------	-----

	а	b
А	A,B	С
В	Α	В
С	-	A,B

Solution:

به ومهینتی نیای و متمانه بن ین Directorate of Quality Assurance and Accreditation

External Evaluator

I found that this course book is easy to learn and beneficial in building reflective learners who took the time to think through their work and monitor their own progress. Very clear sub-titles, good detail in explaining the subjects and good application examples have been presented.

Assist. Lect. Najat Yohana Danha