Module (Course Syllabus) Catalogue

بارِيّو هبـر ايـتنى دلّنيايىى جوّرى و Directorate of Quality Assurance and Accreditation متمانـهـهخشين

Course Book

Course Description	Now a day, most of the equipment used are Mathematics, therefore it's very important to recognize the main parts of these systems which include : - Main parts solution and Classification of differential equation How to apply the Integration. - Infinite Sequences and Series, Convergence and Divergence, Infinite Series, Use partial fractions to find the sum of each series. - Application of Integration. - Vectors and the Geometry of Space.				
Course objectives	Applying mathematics operation to recognize and classify ordinary differential equations,solve linear first-order ordinary differential equations, solve constantcoefficient linear second-order differential equations and understand the basic functioning of an NPZ model. Solving Electrical Engineering equations using Laplace Transform. Develop inequalities to represent real world situations and use them to solve problems. Solve problems in a range of mathematical applications using the Integration some electrical application circuit using integration				
Student's obligation	- Attendance \& follow the lectures - Missed classes will not be compensated including the quizzes and the scheduled assignments. The students will lose marks on unattended classes with quizzes unless a legal document or authorized leave is presented which should explain the excuse of the absence. However, the absent student should take the responsibility for making up the missed lecture Submit homework				
Required Learning Materials	By the end of the course, students should be able to: - Solution of linear equation. - Solving Electrical Engineering equation. - How to solve the differential equations. - transform allows equations in the "time domain" to be transformed into an equivalent equation - APPLICATIONS OF DEFINITE INTEGRALS - INFINITE SEQUENCES AND SERIES				
Evaluation	Task		Weight (Marks)	Due Week	Relevant Learning Outcome
	$\begin{gathered} \text { Pape } \\ =7 \\ =\frac{b}{x} \\ 0.0 \\ 0 \\ 0 \\ 0 \end{gathered}$	Review			
		Homework	10\%		
		Class Activity	2\%		

	Report	8\%			
	Seminar	8\%			
	Essay				
	Project	-			
	Quiz	8\%		All	All
	Midterm Exam	24\%			
	Final Exam	40\%			
	Total	100\%			
Specific learning outcome:	1- Use geometry and the properties of definite integrals to evaluate them. 2- Methods and techniques to solution differential equation 3- Can determine the convergence or divergence of the series. 4- Apply calculus of three-dimensional space. 5- The students able to use the transformation of the in depended variable to \int domain if the in depended variable is t,				
Course References:	- Calculus, Robert A. Adams - Thomas Calculus, George B. Thomas, Maurice D. Weir, Joel R. Hass - Internet				
Course topic					
Course topics (Theory)			Week	Learning Outcome	
1- Application of definite integration			1	Students will be able to Calculate a definite integral and Volumes. Calculate the area between a curve and the x-axis over a given interval	
2-Classification of differential equation			2	Students will be able to do the following: recognize and classify ordinary differential equations.	
3- Methods and techniques differential equation			3	Determines the type of a linear differential equation systems. Uses the operator method to solve linear systems with constant coefficients.	
4- Liner equation and Bernoulli Equation			4	Solves Bernoulli equations. Will be able to find solution of higherorder linear differential	

بكريّو مبـر ايهتى دلّنّيايى جوّرى و Directorate of Quality Assurance and Accreditation متمانـبهـخشين

5- Exact Differential Equations	5	Will be able to solve first-order ordinary differential equations
6- Infinite sequences and series	6	determine if a given series is a geometric series and determine if a geometric series converges and divergent
7- Using l'Hôpital's Rule	7	
8- Infinite Series	8	Use the concept of the limit at infinity to determine whether a sequence of real.
9-Vectors and the geometry of space	9	Apply dot or cross product to determine angles between vectors, orientation of axes, areas of triangles and parallelograms in space, scalar and vector
10- Laplace transform	10	inverse Laplace Transform and some applications to solve the differential equations and integral equations
11- Hyperbolic function in Laplace transformation	11	
12-Gamma function :	12	
Questions Example Design 19. Examinations: Q1. Solve the equation $(x-4) y^{4} d x-x^{3}\left(y^{2}-3\right) d y$ Solution: dividing by $x^{3} y^{4}$, we obtain $\frac{(x-4) d x}{x^{3}}-\frac{\left(y^{2}\right.}{}$ Or $\left(x^{-2}-4 x^{-3}\right) d x-\left(y^{-2}-3 y^{-4}\right) d y=0$ Integration, we have the -one parameter family of solution $\begin{array}{r} \int\left(x^{-2}-4 x^{-3}\right) d x-\int(3 \\ \int x^{-2} d x-4 \int x^{-3} d x-\int y \\ \frac{-1}{x}+\frac{2}{x^{2}}+\frac{1}{y} \end{array}$	$d y$ $-3 y$	$\begin{aligned} & d y=0 \\ & \int y^{-4} d y=0 \end{aligned}$
Q2: A right circular cylindrical tank with rasin		and height 16 ft . that was

بكريّو مبـر ايهتى دلّنّيايى جوّرى و Directorate of Quality Assurance and Accreditation متمانـبـهخشين
initially full of water is being drained at the rate of $0.5 \sqrt{x} f t^{3} / \mathrm{min}$ Find a formula for the depth and the amount of water in the tank at any time t. How long will it take to empty the tank?
Solution :-

$$
\begin{aligned}
& \mathrm{v}=r^{2} \pi h=(5)^{2} \pi \mathrm{x}=25 \pi \mathrm{x} \\
& \frac{d v}{d t}=25 \pi \frac{d x}{d t},\left(\text { Negative because } V \text { is decreasing and } \frac{d y}{d t}<0\right)
\end{aligned}
$$

$$
-0.5 \sqrt{x}=25 \pi \frac{d x}{d t}, \quad \frac{d x}{d t}=\frac{-0.5 \sqrt{x}}{25 \pi}
$$

$x(0)=16$ The water is 16 ft deep when $t=0$
We solve the differential equation by separating the variables.

$$
\begin{aligned}
& \quad x^{-\frac{1}{2}} d x=-\frac{1}{50 \pi} d t, \text { (Integrate both sides.) } \\
& \int x^{-\frac{1}{2}} d x=\int-\frac{1}{50 \pi} d t \\
& 2 x^{\frac{1}{2}}=-\frac{t}{50 \pi}+c
\end{aligned}
$$

The initial condition $x(0)=16$ determines the value of C.
$2(16)^{\frac{1}{2}}=-\frac{0}{50 \pi}+c$

$$
c=8
$$

$\left.2 x^{\frac{1}{2}}=-\frac{t}{50 \pi}+8\right\} / 2$

$$
\begin{gathered}
x^{\frac{1}{2}}=-\frac{t}{100 \pi}+4 \\
x=\left(4-\frac{t}{100 \pi}\right)^{2} \\
v=25 \pi x \\
v=25 \pi\left(4-\frac{t}{100 \pi}\right)^{2}
\end{gathered}
$$

Q3. Chose the correct answer for the following statements:
1-The degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{4}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$ is
(a) 3
(b) 2
(c) 1
(d) not defined

2-The solution of the differential equation $\left(e^{x}+1\right) y d y=(y+1) e^{x} d x$ is :
(a) $e^{y}=c\left(e^{x}+1\right)(y+1)$
(b) $e^{y}=c\left(e^{x}+y+1\right)$
(c) $y=\left(e^{x}+1\right)(y+1)$
(d) None of these

3- The solution of the differential equation $\frac{d y}{d x}=1-x+y-x y$ is:
(a) $e^{1+y}=x-\frac{x^{2}}{2}+c$
(b) $\log |1+y|=x-\frac{x^{2}}{2}+c$
(c) $e^{y}=x-\frac{x^{2}}{2}+c$
(d) none of these

Solution :

$$
\begin{gathered}
\frac{d y}{d x}=1-x-y-x y \\
\frac{d y}{d x}(1+y)-(x+x y) \\
\frac{d y}{d x}(1+y)-x(1+y) \\
\frac{d y}{d x}=(1+y)(1-x) \\
\frac{d y}{(1+y)}=(1-x) d x \\
\int \frac{d y}{(1+y)}-\int(1-x) d x=0 \\
\ln (1+y)-\left(x-\frac{x^{2}}{2}\right)+c
\end{gathered}
$$

Extra notes:

I don't have any notes about all topics

External Evaluator

The course book is covered most of the tasks in the Matlab program and joint most topic in commincation and electronic department .

