Module (Course Syllabus) Catalogue
 2022-2023

College/ Institute	Erbil Technical Engineering College		
Department	Highway Engineering Department		
Module Name	Computer Mapping \& GIS		
Module Code	HE404		
Degree	Tech. Diploma \qquad Bachelor \square High Diploma \square Master PhD		
Semester	CMG803		
ECTS (Credits)	5		
Module type	Prerequisite	Core	Assist.
Weekly hours	3		
Weekly hours (Theory)			
Weekly hours (Practical)	3 hr Class		
Number of Weeks	10		
Lecturer (Theory)	Razhan Sherwan M.Saleem		
E-Mail \& Mobile NO.	razhan.m.saleem@epu.edu.Iq		
Lecturer (Practical)	Razhan Sherwan M.Saleem		
E-Mail \& Mobile NO.			
Website			

Course Book

Course Description	To learn about AutoCAD Civil 3D and how it handles data, first complete the Getting Started tutorials. Then, you will have the basic skills you need to explore the tutorials about AutoCAD Civil 3D features, such as points, surfaces, project management, alignments, profile, corridors, cross sections and materials quantity.			
Course objectives	1. Use the tools of Civil 3D. 2. Combine tools and develop workflows in various design scenarios. 3. Use the tools Civil 3D has to offer, presents you with a number of options and real-world scenarios, and introduces you to the new features in the current version.			
Student's obligation	1. Class starts on time.NO entry after 15 minutes late. 2. Writing a report every week after practical lecture and submit it next week. 3. Quiz is expectable every week. 4. All student must bring all necessary tools for the lecture.			
Required Learning Materials	1. All lectures by PowerPoint. 2. Notes and questions are explained on white board. 3. Videos will be played during the lectures. 4. Direct questions to Students.			
	Task	Weight (Mark)	Due Week	Relevant Learning Outcome
	Class Activity	2\%		
	Report and Seminar	16\%		
	Homework	10\%		
Evaluation	Quiz	8\%		
	Mid Term Exam	24\%		
	Final	40\%		
	Total	100\%		

Specific learning outcome:	This module will demonstrate the workflows for base map compilation, displaying and editing roadway features in plan and profile views, and creating finished ground terrain models. Roadway alignments, profile views, and digital terrain models are utilized to display and edit the roadway parts during the design process.	
Course References:	Mastering AutoCAD ${ }^{\circledR}$ Civil 3D® 2016 by Cyndy Davenport and Ishka Voiculescu. > AutoCAD Civil 3D 2016 Essentials by Eric Chappell https://www.udemy.com/course/autocad-civil3d/ > https://knowledge.autodesk.com/support/civil-3d	
Course topics	Week	Learning Outcome
"Points," introduces AutoCAD Civil 3D points and	1	The various methods of creating them. You will also spend some time exploring the control of AutoCAD Civil 3D points with description keys and groups.
"Surfaces," introduces the various methods of creating surfaces.	2	Using free and low-cost data to perform preliminary surface creation. Then you will investigate the various surface editing and analysis methods.
"Alignments," introduces the basic horizontal layout element.	3	This chapter also examines using layout tools that maintain the relationships between the tangents, curves, and spiral elements that create alignments.
"Profiles and Profile Views,"	4 4	Examines the vertical aspect of road design from the establishment of the existing profile to the design and editing of the proposed profile. In addition, you will explore how profile views can be customized to meet the required format for your design and plans.
"Assemblies and Subassemblies," AND "Corridors"	5	Introduces the building blocks of AutoCAD Civil 3D cross-sectional design. You will look at the many subassemblies available in the Tool Palettes and look at how to build full design sections for use in any design environment. Also, introduces the basics of corridors full designs from horizontal, vertical, and cross-sectional design elements. You will look at the various components to understand how corridors work before moving to a more complex design set.

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { "Superelevation," } \\ \text { "Cross Sections" } \\ \text { Quantity Take off" }\end{array} & 6 & \begin{array}{l}\text { Takes a close look at the tools used to add } \\ \text { superelevation to roadways and you will have a } \\ \text { chance to use the axis of rotation (AOR) } \\ \text { subassemblies that can pivot from }\end{array} \\ \text { several designs point. } \\ \text { Also, looks at slicing sections from surfaces, } \\ \text { corridors and using alignments and the mysterious } \\ \text { sample line group. } \\ \text { Quantity Take off, you learn how to set material } \\ \text { quantity and generate quantity take off table on } \\ \text { the cross-section views }\end{array}\right]$

