

Construction and Building Materials

Volume 349, 26 September 2022, 128737

Metamodel techniques to estimate the compressive strength of UHPFRC using various mix proportions and a high range of curing temperatures

```
Wael Emad <sup>a</sup> ⋈, Ahmed Salih Mohammed <sup>b</sup> ⋈ ⋈, Ana Bras <sup>c</sup>, Panagiotis G. Asteris <sup>d</sup>,

Rawaz Kurda <sup>e f g</sup> ⋈ ⋈, Zhyan Muhammed <sup>h</sup>, A.M.T. Hassan <sup>i</sup>, Shaker M.A. Qaidi <sup>j</sup> ⋈,

Parveen Sihag <sup>k</sup>

Show more ✓

+ Add to Mendeley ≪ Share 55 Cite

https://doi.org/10.1016/j.conbuildmat.2022.128737 ≥

Get rights and content ≥
```

Abstract

In order to predict the compressive strength (σ_c) of Ultra-high performance fiber reinforced concrete (UHPFRC), developing a reliable and precise technique based on all main concrete components is a cost-effective and time-consuming process. To predict the UHPFRC compressive strength, four different soft computing techniques were developed, including the nonlinear- relationship (NLR), pure quadratic, M5P-tree (M5P), and artificial neural network (ANN) models. Thus, 274 data were collected from previous studies and analyzed to evaluate the effect of 11 variables that impact the compressive