

Journal of Building Engineering

Volume 74, 1 September 2023, 106820

Effitioned soft computing models to evaluate the impact of silicon dioxide (SiO₂) to calcium oxide (CaO) ratio in fly ash on the compressive strength of concrete

<u>Dilshad Kakasor Ismael Jaf</u>^a, <u>Alan Saeed Abdulrahman</u>^b, <u>Payam Ismael Abdulrahman</u>^c ○ ⋈, <u>Ahmed Salih Mohammed</u>^b d, <u>Rawaz Kurda</u>^{efg} ○ ⋈, <u>Hemn Unis Ahmed</u>^h, <u>Rabar H. Faraj</u>

Show more V

+ Add to Mendeley & Share 55 Cite

https://doi.org/10.1016/j.jobe.2023.106820 7

Get rights and content >

Abstract

Environmental issues are raised from global warming due to raised Carbon Dioxide (CO₂) emissions of factories worldwide. <u>Cement production</u> provides about 8–10% of the total CO₂ emissions to the environment. Cementitious materials, such as fly ash, are suggested as the best alternatives to cement as the main ingredient of concrete. Fly ash is a <u>powder finer</u> than cement, almost rich in <u>silica</u> and alumina. The current study investigated the effect of the ratio of SiO₂/CaO in fly ash on the <u>compressive strength</u> of cement-based concrete modified with different fly ash contents and classes for various mix proportions. 236 fly ash-modified concrete samples were examined, evaluated, and modeled for that