

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2023-2024

College/ Institute	Erbil Technology collage		
Department	Renewable energy Technology		
Module Name	Thermodynamics		
Module Code	THE202		
Degree	Technical Diploma * Bachelor		
	High Diploma Master PhD		
Semester	1 st , 1 st stage		
Qualification	MSc.		
Scientific Title	Assistant Lecturer		
ECTS (Credits)	7		
Module type	Prerequisite Core Assist.		
Weekly hours	4		
Weekly hours (Theory)	(2)hr Class (171)Total hrs Workload		
Weekly hours (Practical)	(2)hr Class (171)Total hrs Workload		
Number of Weeks	12		
Lecturer (Theory)	Mayasah Hatem Aswad		
E-Mail & Mobile NO.	mayasah.aswad@epu.edu.iq		
Lecturer (Practical)	Mayasah Hatem Aswad		
E-Mail & Mobile NO.	mayasah.aswad@epu.edu.iq		
Websites			

Course Book

Evaluation	Task	Weight (Marks)	Due Week	Relevant Learning Outcome
Required Learning Materials	All lectures prepared in soft and exhibit on data show. Also they are given to students in hard copy. Make about 10 activities and one intermediate exam during annual course.			
Student's obligation	Missed classes will not be compensated including the quizzes and the scheduled assignments. The students will lose marks on unattended classes with quizzes unless a legal document or authorized leave is presented which should explain the excuse of the absence. However, the absent student should take the responsibility for making up the missed lecture.			
Course objectives	The purpose of study student to understand provide an introductor mechanical- engineer	d the thermoonery treatment	dynamic prinof thermody	ciples to
Course Description	Thermodynamic is a and temperature and studying of this scien. We will have a degree mid-term exam and the will have quizzes too.	their relation the provided keefor theoretic final exam, ar	to energy a knowledge o cal part from nd for the pr	ind work, the if the field. If quizzes and actical part we

	Paper Review			
		Homework	10	
	Ass	Class Activity	2	
	Assignments	Report	14	
		Seminar		
	nts	Essay		
		Project		
	Quiz Lab. Midterm Exam Final Exam		4	
			14	
			16	
			40	
	Tota	1	100	
Specific learning outcome:	At the end of the course the students will understand the meaning of thermodynamic philosophy and how to use the first and second laws of thermodynamic to solve any problem and find solutions in their work fields.			

Course References:

- Engineering Thermodynamics by P.K.Nag.
- Thermodynamics by Shavit and Gutfinger.
- Thermodynamics- Engineering Approach by Cengel & Boles.

Course topics (Theory)	Week	Learning Outcome
Fundamental Concept and Definitions: Introduction,	1	
basic concept, system, control volume, surrounding,		
boundaries, and types of systems, concept of		
continuum, equilibrium, state, and process.		
Work and Heat, gas laws, ideal gas, real gas,	2	
Daltons law, property of mixture of gases.		
Zeros' law of thermodynamics: concept of	3	
temperature and its measurement, temperature		
scales.		

First law of thermodynamics: thermodynamic definition of work, displacement work for various non-flow processes, Joules experiment.	4	
First law analysis for closed system (non-flow processes), internal energy and enthalpy, limitations of first law of thermodynamics.	5	
Analysis of unsteady processes such as filling and evacuation of vessels with and without heat transfer.	6	
Second law of thermodynamics: Thermal reservoirs, Energy conversion, Heat engines, Efficiency, Reversed heat engine, Heat pump, Refrigerator	7	
Coefficient of performance, Kelvin Plank and Clausius statement of second law of thermodynamics, Equivalence of the two statements.	8	
Reversible and irreversible processes, Carnot cycle and Carnot engine, Carnot theorem and its corollaries, thermodynamic temperature scale.	9	
Concept of Entropy, Entropy change of pure substance in different thermodynamic processes, principles of entropy increase.	10	
Statement of the third law of thermodynamics.	11	
Properties of steam, Critical point, Saturation state, Simple Rankine cycle.	12	
Practical Topics		Learning
Tructicul Topics	Week	Outcome
Temperature measuring devices – report and discussion.	1	
Calculate of temperature in different ways- report and discussion	2	
Sensible heat and latent heat- report and discussion.	3	
Study of air properties- report and discussion	4	

Study the characteristic of a thermal pump - report and discussion	5			
Transforming mechanical energy to thermal energy - report and discussion	6			
Set the specific heat of a solid body - report and discussion	7			
Study the steam engine - report and discussion	8			
Study the fire tube boiler - report and discussion	9			
Questions Example Design Q1/ Fill the following blanks: 1- Working substance is 2- Types of systems are, and 3- Power is, its units in 4- Amount of gas has a pressure of 300 kpa, volume of 0.02m³ and a temperature of 30°C.If R=0.24kj/kg.k then the mass of this gas will be 5- Polytropic process means				

Q2/ Air at atmospheric pressure of 1.06bar and a temperature of 15°C is compressed isothermally to 14 bar and is therefore expanded adiabatically reversibly to the atmospheric pressure.

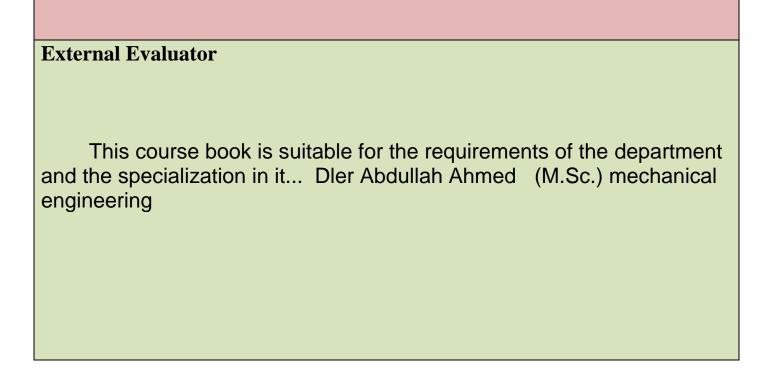
What is the final temperature and specific volume of the air? Calculate also the work done and is it transferred to or from the surroundings.

Use: R= 0.287kj/kg.K

 $C_p = 0.992 \text{kj/kg.K}$

Mark)25(

Q3/ A gas whose pressure, volume, and temperature are 275 KN $/m^2$, 0.09 m^3 , and 185 °C respectively has its state changed at constant pressure until its temperature becomes 15°C . How much the heat is transferred from the gas and how much the work is done on the gas during the process? Take $C_p\!=\!1.008$ kj/kg.K and R=0.29 kj/kg.K.


(25Mark)

Q4/Calculate Δ U and Δ H for 1 kg of water when it is vaporized at the constant temperature of 100°C and the constant pressure of 101.33kpa. The specific volume of liquid and vapor water are 0.00104 and 1.673m³kg⁻¹. Heat in the amount 2256.9kj is added to the water.

(25Mark)

Extra notes:

I hope to have new developed devices for the practical part.

