

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue

2023-2024

College/ Institute	Erbil Technology College			
Department	Construction and Materials Technology			
	Engineering Department			
Module Name	Calculus 1			
Module Code	CAL114			
Degree	Technical Diploma Bachelor			
	High Diploma Master PhD			
Semester	1			
Qualification	MSc.			
Scientific Title	Assistant Lecturer			
ECTS (Credits)	6			
Module type	Prerequisite Core Assist. 🐵			
Weekly hours	4			
Weekly hours (Theory)	(4)hr Class (192)Total hrs			
	Workload			
Weekly hours (Practical)	()hr Class ()Total hrs Workload			
Number of Weeks	12			
Lecturer (Theory)	Lawin Dhahir Hayder			
E-Mail & Mobile NO.	Lawin.hayder@epu.edu.iq			
Lecturer (Practical)				
E-Mail & Mobile NO.				
Websites				

Course Book

Course Description	Functions and their graphs, differentiation of polynomial, rational and trigonometric functions. Velocity and acceleration. Geometric applications of the derivative, minimization and maximization problems, the indefinite integral, and an introduction to differential equations. The definite integral and the Fundamental Theorem of Calculus.
	Main concepts of calculus are derivatives (rates of change of a function) and
	integrals (which, in particular, provide a way to recover a function from the
	knowledge of its derivative). Knowledge and the ability to work with these
	concepts is essential for further studies of mathematical subjects, as well as
	for applications of mathematical techniques in other sciences. This course will
	focus on understanding calculus concepts, analytical reasoning and
	developing crucial skills in order to calculate, analyze, interpret and
	communicate the results clearly. Specific course learning objectives are listed
	below.
	1. Learn the general concept of function and its applications to real-world
	situations.
Course objectives	2. Learn to work with exponential, logarithmic and trigonometric functions
	and their applications in applied problems.
	3. Learn the concepts of the derivative and its underlying concepts such as
	limits and continuity.
	4. Learn to calculate derivative for various type of functions using definition
	and rules.
	5. Apply the concept of derivative to completely analyze graph of a function.
	6. Learn about various applications of the derivative in applied problems.
	7. Learn about anti-derivative and the Fundamental Theorem of Calculus and
	its applications.
	8. Learn to use concept of integration to evaluate geometric area and solve other applied problems

	Attending the lecture is a fundamental part of the course. You are responsible				
	for material presented in the lecture whether or not it is discussed in the				
	textb	ook. You should	d expect que	stions on	the exams to test your
	unde	rstanding of conc	epts discussed	in the lect	ure and in the homework
Student's obligation	assig	nments.			
J. J	It can be very helpful to study with a group. This type of cooperative learning				
	is encouraged; however, be sure that you have a thorough understanding of				
	the c	oncepts besides th	ne mathematica	al steps used	d to solve a problem. You
	must	be able to work th	rough the prob	lems on you	ır own.
Required Learning	Data Show, Handout lecture notes and white board notes.				
Materials					
		Task	Weight	Due	Relevant Learning
			(Marks)	Week	Outcome
	Paper Review				
		Homework	14 %		
	Assignmer	Class Activity	2 %		
		Report			
		Seminar	8 %		
Evaluation	Its	Essay	0 • /		
		Project	8%		
	Quiz		4 %		
	Lab.		24.0/		
	Midterm Exam		24 %		
	Final Exam		40%		
	I Otal Upon successful comp		100% etion of this co	urse	
	1. interpret a function from an algebraic, numerical, graphical and verbal				
Specific learning	perspective and extract information relevant to the phenomenon modeled by				
outcome:	the function.				
	2. verify the value of the limit of a function at a point using the definition of				
	the limit				

lgebraically heorem for taneous rate the tangent action. lerivative at I difference
heorem for taneous rate the tangent action. lerivative at I difference
heorem for taneous rate the tangent action. lerivative at I difference
heorem for taneous rate the tangent action. lerivative at I difference
taneous rate the tangent action. lerivative at l difference
taneous rate the tangent action. lerivative at l difference
the tangent action. lerivative at l difference
the tangent action. lerivative at l difference
iction. lerivative at l difference
nction. lerivative at l difference
lerivative at l difference
l difference
g the (limit)
ns from the
point
zation of a
the rules of
n rule.
oction using
to its graph
and inverse
and inverse
and inverse

	20. i	nterpret the	value of the first and second derivative as measures of	
	increase and concavity of a functions.			
	21. compute the critical points of a function on an interval.			
	22. i	dentify the e	extrema of a function on an interval and classify them as	
	minima, maxima or saddles using the first derivative test.23. use the differential to determine the error of approximations.24. understand the consequences of Rolle's theorem and the Mean Value			
	theor	em for diffe	rentiable functions	
	25.	find the a	nti-derivative of elementary polynomials, exponential,	
	logar	ithmic and t	rigonometric functions.	
	26. interpret the definite integral geometrically as the area under a curve27. construct a definite integral as the limit of a Riemann sum			
	28. approximate a definite integral using left sum, right sum, midpoint and			
	trapezoidal rules			
	29. interpret the indefinite integral as a definite integral with variable limit(s).			
	30. interpret differentiation and anti-differentiation as inverse operations			
	(Fundamental Theorem of Calculus, part 1)			
	31. interpret the anti-derivative as a definite integral with variable limit and			
	implement this expression on graphing platforms			
	32. evaluate a definite integral using an anti-derivative (Fundamental			
	Theorem of Calculus, part 2)			
	33. use substitution to find the anti-derivative of a composite function.			
	34. apply basic optimization techniques to selected problems arising in			
	vario	us fields suc	h as physical modelling, economics and population dynamics.	
	1 0			
Course	1. Stewart, J. (2016). <i>Single variable calculus: Early transcent</i>			
References:	edition.). Boston, MA, USA: Cengage Learning. (Major)			
	2. 1	Lecture Note	s. (Minor)	
Course tonics				
(Theory)		Week	Learning Outcome	
(Incory)				

Functions	1 and 2	Functions are fundamental to the study of calculus. review what functions are and how they are pictured as graphs, how they are combined and transformed, and ways they can be classified. We review the trigonometric functions, and we discuss misrepresentations that can occur when using calculators and computers to obtain a function's graph. We also discuss inverse, exponential, and logarithmic functions.
Limits and continuity	3 and 4	The concept of a limit is fundamental to finding the velocity of a moving object and the tangent to a curve. In this chapter we develop the limit, first intuitively and then formally. We use limits to describe the way a function varies. Some functions vary <i>continuously</i> ; small changes in x produce only small changes in $f(x)$. Other functions can have values that jump, vary erratically, or tend to increase or decrease without bound. The notion of limit gives a precise way to distinguish between these behaviors.
Differentiation	5 and 6	In the beginning of we discussed how to determine the slope of a curve at a point and how to measure the rate at which a function changes. Now that we have studied limits, we can define these ideas precisely and see that both are interpretations of the <i>derivative</i> of a function at a point. We then extend this concept from a single point to the <i>derivative function</i> , and we develop rules for finding this derivative function easily, without having to calculate any limits directly. These rules are used to find derivatives of most of the common functions reviewed in previous lessons 1, as well as various combinations of them. The derivative is one of the key ideas in calculus, and we use it to solve a wide range of problems involving tangents and rates of change.
Application of derivatives	7 and 8	In this lesson we use derivatives to find extreme values of functions, to determine and analyze the shapes of graphs, and to find numerically where a function equals zero. We also introduce the idea of recovering a function from its derivative. The key to many of these applications is the Mean Value Theorem, which paves the way to integral calculus .
Integration	9 and 10	A great achievement of classical geometry was obtaining formulas for the areas and volumes of triangles, spheres, and cones. In this chapter we develop a method to calculate the areas and volumes of very general shapes. This method, called <i>integration</i> , is a tool for calculating much more than areas and volumes. The <i>integral</i> is of fundamental importance in statistics, the sciences, and

		engineering. We use it to calculate quantities ranging from probabilities and averages to energy consumption and the forces against a dam's floodgates. We study a variety of these applications in the next chapter, but in this chapter we focus on the integral concept and its use in computing areas of various regions with curved boundaries.
Application of definite integrals	11 and 12	In this lesson we extend the applications of definite integrals to finding volumes, lengths of plane curves, and areas of surfaces of revolution. We also use integrals to solve physical problems involving the work done by a force, the fluid force against a planar wall, and the location of an object's center of mass.

Questions Example Design

Q1: Let $f(x) = 4x^3 - 18$, Find: A) f'(x) by using Definition of derivative. B) The tangent line at the point (2, 0). Q2:

A) Prove that: $\frac{1}{\sin \theta + 1} - \frac{1}{\sin \theta - 1} = \frac{2}{\cos^2 \theta}$

B) Graph the function $p(x) = \sqrt{x+7}$, find range and domain of this function.

Q3:

A) Calculate Calculate $\log_4 256 - \log_4 16$.

B) Given $h(x) = 68x^2 - 45$, find $h^{-1}(x)$.

C) Calculate $\lim_{y\to 0} \frac{1-\cos 25y}{5y}$.

Extra notes:

External Evaluator

Approved Dr. Saad Khalis Essa