

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue

2022 - 2023

College/ Institute	Erbil Technology College				
Department	Construction and Materials Technology				
	Engineering department				
Module Name	Calculus II				
Module Code	CAL123				
Degree	Technical Diploma 💿 Bachelor				
	High Diploma Master PhD				
Semester	Second				
Qualification					
Scientific Title	Assist Lecturer				
ECTS (Credits)	7				
Module type	Prerequisite Core Assist. ®				
Weekly hours	5				
Weekly hours (Theory)	(5)hr Class (189)Total hrs				
	Workload				
Weekly hours (Practical)	()hr Class () Total hrs Workload				
Number of Weeks	12				
Lecturer (Theory)	Lawin Dhahir Hayder				
E-Mail & Mobile NO.	Lawin.hayder@epu.edu.iq				
Lecturer (Practical)					
E-Mail & Mobile NO.					
Websites					

Course Book

Course Description	This course is one of the main courses for 1st stage students in construction materials and technology departments and aims to introduce the engineering mathematics for the students. To learn Integration, The definite integral and the Fundamental Theorem of Calculus, Indefinite Integrals and the Substitution Method, The Logarithm Defined as an Integral, Integrals of exponential function, Trigonometric Integrals, Trigonometric Substitutions, Integration by Parts, Integration of Rational Functions by Partial Fractions, Numerical Integration. Substitution and Area Between Curves, Volumes Using Cross-Sections, Volumes Using Cylindrical Shells and Arc Length, Trapezoidal Rule and Simpson's Rule.
Course objectives	 To introduce the concept of integration, study various techniques of integration and illustrate some applications of integration. 1. Learn the general form of integration. 2. Learn to work with exponential, logarithmic and trigonometric functions and their applications in applied problems. 3. Learn the concepts of the anti- derivative and its underlying concepts such as limits and continuity. 4. Learn to calculate anti- derivative for various type of functions using definition and rules. 5. Apply the concept of anti - derivative to completely analyze graph of a function. 6. Learn about various applications of the anti-derivative in applied problems. 7. Learn about anti-derivative and the Fundamental Theorem of Calculus and its applications. 8. Learn to use concept of integration to evaluate geometric area and solve other applied problems

	Attending th	e lecture is a fu	ndamental na	ort of the cou	urse. You are responsible for	
		Attending the lecture is a fundamental part of the course. You are responsible for				
Student's obligation	material presented in the lecture whether or not it is discussed in the textbook. You					
	should expect questions on the exams to test your understanding of concepts					
	discussed in the lecture and in the homework assignments.					
	It can be ver	y helpful to stu	dy with a gro	oup. This typ	pe of cooperative learning is	
	encouraged; however, be sure that you have a thorough understanding of the					
	concepts besides the mathematical steps used to solve a problem. You must be able					
	-		-		a problem. Tou must be able	
	to work through the problems on your own.					
Dequired Leaveing	Data Show, Handout lecture notes and white board notes.					
Required Learning Materials						
IVIALEI IAIS						
	Г	ask	Weight	Due	Relevant Learning	
			(Marks)	Week	Outcome	
	Paper	Review	1000			
	Assignments	Homework	10%			
		Class Activity	2%			
		Report				
Evaluation		Seminar	8%			
Evaluation		Essay				
		Project	8%			
	Quiz		8%			
	Lab.					
	Midterm Exam		24%			
	Final Exam		40%			
	Total		100%		_	
	Upon completion of the course, the student will be able to:					
	1. Find the anti-derivative of elementary polynomials, exponential, logarithmic					
	and trigonometric functions.					
Specific learning	2. Use the Fundamental Theorem of Calculus to evolute the definite interval					
	2. Use the Fundamental Theorem of Calculus to evaluate definite integrals.					
outcome:	3. Definite integrals to find areas of planar regions.					
	4. Interpret the definite integral geometrically as the area under a curve.					
	5. Construct a definite integral as the limit of a Riemann sum.					

6. Approximate a definite integral using left sum, right sum, midpoint and trapezoidal rules.
7. Interpret the indefinite integral as a definite integral with variable limit(s).
8. Interpret differentiation and anti-differentiation as inverse operations (Fundamental Theorem of Calculus, part 1).
9. Interpret the anti-derivative as a definite integral with variable limit and implement this expression on graphing platforms.
 Evaluate a definite integral using an anti-derivative (Fundamental Theorem of Calculus, part 2).
11. Use substitution to find the anti-derivative of a composite function.
12. Apply basic optimization techniques to selected problems arising in various fields such as physical modelling, economics and population dynamics.
13. Interpret a volume of revolution of a function's graph around a given axis as a (Riemann) sum of disks or cylindrical shells, convert to definite integral form and compute its value.
14. Express the length of a curve as a (Riemann) sum of linear segments, convert to definite integral form and compute its value.
15. Express the surface area of revolution of a function's graph around a given axis as a (Riemann) sum of rings, convert to definite integral form and compute its value.
16. Anti-differentiate products of functions by parts.
17. Recognize and implement appropriate techniques to anti-differentiate products of trigonometric functions.
18. Devise and apply a trigonometric substitution in integrals involving Pythagorean quotients.
19. Decompose a rational integrand using partial fractions.
20. Express the length of a curve as a (Riemann) sum of linear segments, convert to definite integral form and compute its value.
21. Evaluate integrals by different methods of integration.
22. Understand the concept of indefinite integral as anti-derivative.

Course References:	 Stewart, J. (2016). Single variable calculus: Early transcendentals (Eight edition.). Boston, MA, USA: Cengage Learning. (Major). Lecture Notes. (Minor) 				
Course topics (The	ory)	Week	Learning Outcome		
Integration, Indefinite and definite integrals.	Integrals	1			
Integration of Trigonor Function and Exponent Function		2			
Substitution Rule		3			
Integration by Parts		4			
Integration of Rational by Partial Fractions	Functions	5			
Mid Term Exam		6			
Numerical Integration: Trapezoidal Rule and S Rule.	Simpson's	7&8			
Area, Area Between Co Average Value of a Co Function Revisited		9 & 10			
Volume, Volume of Py Volume of a Wedge, A Revolution, Volume of	Solid of	11 & 12			
Final Exam		13 & 14			
Questions Exampl Q1:	e Design	1			

Find
$$\int \cos(7\theta + 3) d\theta$$
.
Solution:

$$\int \cos(7\theta + 3) d\theta = \frac{1}{7} \int \cos(7\theta + 3) \cdot 7 d\theta$$

$$= \frac{1}{7} \int \cos u du$$

$$= \frac{1}{7} \sin u + C$$

$$= \frac{1}{7} \sin(7\theta + 3) + C$$
Q2:
Use partial fractions to evaluate

$$\int \frac{dx}{x(x^2 + 1)^2} - \frac{dx}{x(x^2 + 1)^2} - \frac{dx}{x(x^2 + 1)^2}$$
Solution: The form of the partial fraction decomposition is

$$\frac{1}{x(x^2 + 1)^2} = \frac{d}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2}$$
Multiplying by $x(x^2 + 1)^3$, we have

$$1 - d(x^2 + 1)^2 + (Bx + Cx(x^2 + 1) + (Dx + Ex))$$

$$= d(x^2 + 2x^2 + 1) + B(x^4 + 2x^2) + C(x^2 + x) + Dx^2 + Ex)$$

$$= (d + B)x^4 + Cx^2 + (2d + B + D)x^2 + (C + E)x + d$$
If we equate coefficients, we get the system

$$d + B = 0, \quad C = 0, \quad 2d + B + D = 0, \quad C + E = 0, \quad d = 1.$$
Solving this system gives $d = 1, B = -1, C = 0, D = -1,$ and $E = 0$. Thus,

$$\int \frac{dx}{x(x^2 + 1)^2} = \int \left[\frac{1}{x} + \frac{-x}{x^2 + 1} + \frac{-x}{(x^2 + 1)^2}\right] dx$$

$$= \int \frac{dx}{x} - \int \frac{1}{x} \frac{dx}{x^2 + 1} + \frac{1}{2(x^2 + 1)} + K$$

$$= \ln |x| - \frac{1}{2} \ln |x| + \frac{1}{2u} + K$$

$$= \ln |x| - \frac{1}{2} \ln |x| + \frac{1}{2u} + K$$

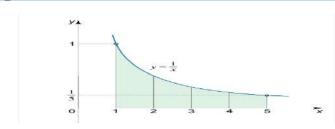
$$= \ln |x| - \frac{1}{2} \ln |x| + \frac{1}{2u} + K$$

$$= \ln |x| - \frac{1}{2} \ln |x| + \frac{1}{2u} + K$$

$$= \ln |x| - \frac{1}{2} \ln |x| + \frac{1}{2u^2} + 1) + K.$$
Q3:Find the integrals of the following:
1.
$$\int_{1}^{4} \left(\frac{3}{2} \sqrt{x} - \frac{4}{x^2}\right) dx$$

$$\int x \cos x \, dx.$$

Solution: 1)


$$\int_{1}^{4} \left(\frac{3}{2}\sqrt{x} - \frac{4}{x^{2}}\right) dx = \left[x^{3/2} + \frac{4}{x}\right]_{1}^{4} \qquad \frac{d}{dt} \left(x^{3/2} + \frac{4}{x}\right) = \frac{3}{2}x^{3/2} - \frac{4}{x^{2}}$$
$$= \left[(4)^{3/2} + \frac{4}{4}\right] - \left[(1)^{3/2} + \frac{4}{1}\right]$$
$$= [8 + 1] - [5] = 4$$
2)
Solution We use the formula $\int u \, dv = uv - \int v \, du$ with
$$u = x, \qquad dv = \cos x \, dx,$$
$$du = dx, \qquad v = \sin x.$$
Simplest antiderivative of $\cos x$
Then

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C.$$

Q4:

Solution

Approximate the area under the curve $y = \frac{1}{x}$ between x = 1 and x = 5 using the Trapezoidal Rule with n = 4 subintervals.

We write the Trapezoidal Rule formula for n = 4 subintervals:

$$T_{4}=rac{\Delta x}{2}[f\left(x_{0}
ight)+2f\left(x_{1}
ight)\,+\,2f\left(x_{2}
ight)+2f\left(x_{3}
ight)\,+\,f\left(x_{4}
ight)]\,.$$

The function has the following values at the points \boldsymbol{x}_i :

$$egin{aligned} f\left(x_{0}
ight) &= f\left(1
ight) = rac{1}{1} = 1; \ f\left(x_{1}
ight) &= f\left(2
ight) = rac{1}{2}; \ f\left(x_{2}
ight) &= f\left(3
ight) = rac{1}{3}; \ f\left(x_{3}
ight) &= f\left(4
ight) = rac{1}{4}; \ f\left(x_{4}
ight) &= f\left(5
ight) = rac{1}{5}. \end{aligned}$$

بەر يو بەر ايەتى دڭنيايى جۆرى و متمانەبەخشىن Directorate of Quality Assurance and Accreditation

$$f\left(x_{4}\right)=f\left(5\right)=\frac{1}{5}$$

Since $\Delta x = 1$, we obtain

$$\begin{aligned} A &\approx T_4 = \frac{1}{2} \left[1 + 2 \cdot \frac{1}{2} + 2 \cdot \frac{1}{3} + 2 \cdot \frac{1}{4} + \frac{1}{5} \right] = \frac{1}{2} \left[1 + 1 + \frac{2}{3} + \frac{1}{2} + \frac{1}{5} \right] \\ &= \frac{1}{2} \cdot \frac{30 + 30 + 20 + 15 + 8}{30} = \frac{1}{2} \cdot \frac{101}{30} = \frac{101}{60} \end{aligned}$$

Extra notes:

External Evaluator Approved Dr. Saad Khalis Essa

