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Abstract
This article introduces an enhancement to the Grover search algorithm to speed up 
computing the probability of finding good states. It suggests incorporating a rotation 
phase angle determined mathematically from the derivative of the model during the 
initial iteration. At each iteration, a new phase angle is computed and used in a rota-
tion gate around y + z axis in the diffusion operator. The computed phase angles are 
optimized through an adaptive adjustment based on the estimated increasing ratio 
of the consecutive amplitudes. The findings indicate an average decrease of 28% 
in the required number of iterations resulting in a faster overall process and fewer 
number of quantum gates. For large search space, this improvement rises to 29.58%. 
Given the computational capabilities of the computer utilized for the simulation, the 
approach is applied to instances with up to 12 qubits or 4096 possible combination 
of search entries.

Keywords Quantum computing · Grover search algorithm · Adaptive search · 
Optimization

1 Introduction

Classical search algorithms, such as the brute-force approach, exhibit a time com-
plexity proportional to the size of the search space—O(N), where N represents the 
number of possible solutions. Grover’s algorithm, on the other hand, achieves a 
quadratic speedup, reducing the time complexity to O

�√
N
�
 [1–3].

Grover’s algorithm revolves around two key quantum computing principles: 
superposition and interference. It exploits the quantum parallelism inherent in super-
position to evaluate multiple possibilities simultaneously. Additionally, interference 
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is strategically harnessed to amplify the probability amplitude of the correct solu-
tion, while diminishing the amplitudes of incorrect ones.

The algorithm begins with the creation of a superposition of all possible states 
representing the search space. Subsequently, a quantum oracle is employed to mark 
the target state, effectively inverting its amplitude. The algorithm then utilizes a 
series of quantum operations, including amplitude amplification, to boost the prob-
ability of measuring the correct solution. This process is iteratively applied, leading 
to a quadratic speedup in finding the desired result compared to classical algorithms.

The Grover search algorithm has been thoroughly described in various references 
and sources, including those mentioned in [1–10]. The description presented in [7] 
is adopted in this paper. For a more profound understanding and additional insights 
into the algorithm, one can refer to the aforementioned references.

Several modifications are proposed in the literature, including circuit decomposi-
tion using unitary matrices [11], elimination of the diffuser’s gate by replacing the 
Hadamard gate with RX

�∕2
[12], the binomial version of the Grover algorithm which 

reduces the number of iterations but increases the number of gates required for the 
search [13], and the use of Clifford’s geometric algebra to visualize the search pro-
cess as a spin-1/2 particle [14]. In [15], a method was introduced requiring only 
O(ln(N)) iterations in certain cases to locate the target state. However, achieving 
consistent improvement in discovering the marked state proved challenging, which 
limits the practical utility of the proposed method. Reference [16] demonstrated the 
possibility of accelerating the search by dividing the register, albeit at the expense of 
increasing the algorithm’s complexity. In [17], it was shown that improving the 
algorithm is feasible when there’s an imbalance in the counts of 0 s and 1 s. How-
ever, this improvement doesn’t necessarily boost computational efficiency; rather, it 
simplifies implementation. In [18], authors proposed a modified version requiring 
fewer gates, resulting in a 12% improvement in accuracy and a 21% decrease in exe-
cution time compared to the original algorithm. Lastly, in [19], authors suggested a 
variational approach resulting in slight performance enhancements for different 
qubit configurations, with improvements of 5.77% and 3.95% for three and four 
qubits, respectively. In Sect. 1.3, an adaptive adjustment is proposed to increase the 
chance of finding the good state by reducing the required number of iterations by 
28%. For large-scale search space, this improvement rises to 29.5%. The process can 
be implemented with fewer number of quantum gates. The proposed approach is 
applied to models with up to 12 qubits or equivalent 4096 possible combination of 
search entries. In addition, another similar approach is presented that include differ-
ent formulas for computing the phase angles.

2  The algorithm

Grover’s algorithm was first introduced by Grover in 1996 [20]. It addresses 
the challenge of finding a solution x0 such that f

(
x0

)
= 1 mapping the function 

f (x) ∶ {0, 1}n
→ {0, 1} , where n denotes the bit-length of the search space. The 

algorithm’s complexity is determined by how often the function f (x) is called. In 
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the worst-case scenarios of classical methods such as the brute-force algorithms, 
the function needs to be called N − 1 times where N = 2n , covering all potential 
options in the search space. Grover’s quantum algorithm notably speeds up this 
procedure, achieving a quadratic acceleration. Here, "quadratic" indicates that 
only around 

√
N evaluations are needed, in contrast to the classical requirement 

of N = 2n.
Consider N = 2n eligible items for a search task indexed with integers from 1 to 

N − 1 , and M distinct inputs for which f (x) = 1 . The algorithm follows these steps 
[7]:

1. Create a register of n qubits set initially to the state |0〉.
2. Apply H gate to each qubit of the register to prepare them for balanced superpo-

sition using the formula 1√
N

∑N−1

x=0
�x ⟩ , where 1√

N
 refers to the uniform amplitude 

for each state �x ⟩.
3. Apply the following 4 steps repeated Noptimal times where Noptimal =

�

4

√
N

M
−

1

2
:

a. Mark the good state or solution using the phase oracle Of  that applies a nega-
tive sign to that target state.

b. Apply H gate to each qubit in the register.
c. Change the sign of every computational basis state except |0〉.
d. Apply H gate again as in 3b. We call the above 3b, c, and d steps as Grover 

discussion operator.

4. Apply measurement to the register to highlight the state index with high prob-
ability.

5. Return to step 3 if the condition is not met

The complete unitary operation applied to the register can be expressed concisely 
in a single equation:

The green-highlighted text is enclosed within a frame to emphasize that this sec-
tion constitutes the paper’s contribution to the algorithm which will be described in 
the following sections. In (1), the blue shading represents the preparation stage (step 
2), the red shading corresponds to the oracle step (step 3a), and the framed green 
shading denotes the Grover diffusion operator (step 3b–d) which is along with the 
oracle, are iterated according to the power specified in the equation ( Noptimal times).

Note that (1) can be rewritten after substituting O0 = X⊗n(cn−1Z)X⊗n as follows:

In (2) we have ( n − 1)-fold-controlled-Z sandwiched between X⊗nH⊗n . The pro-
cess occurs in a right-to-left manner, involving preparation first, followed by phase 
flip, and concluding with amplitude amplification (blue, red, then green).

(1)

(2)
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3  The proposed approach

The Z gate mentioned in (2) functions as a phase-flipping operator that causes a 
half-cycle phase change in the qubit state, leveraging the relationship e�i = −1 . As a 
result, the inversion-about-the-mean operation can be interpreted in two ways: either 
by inverting the amplitude of the specific state intended for amplification as in the 
standard algorithm, or by considering it as a desired phase rotation that doesn’t have 
to be � , and our goal is to augment it.

This prompts the following question:

Is it possible to increase the probability of success by incorporating the 
increasing ratio of amplitudes in each iteration within the diffusion operator 
using a phase-angle rotation gate?

We need to estimate this ratio and hence determine the appropriate phase angle 
to employ in the operator. By examining the Z gate closely, we observe that it does 
not change the amplitude of the state from a real to a complex value or vice versa 
(rotation by � ). Similarly, we understand that the rotation around y-axis by any value 
has the same effect; in other words, if the amplitudes have real values, rotating them 
around the y-axis preserves these values as real. Such preservation of real values 
cannot be accomplished through rotations around the x- or z-axis except for the 
cases where the rotation angle is π.

Hence, our interest lies in investigating whether the rotation by � applied by the 
Z gate in the diffusion operator (2) results in the maximum amplitude following the 
reflection around the mean.

The rotation around the y-axis is described by the following equation:

Multiplying (3) by the matrix of Z-gate we get RYZ
��

 which is a rotation around 
z-axis by � and y-axis by the angle �:

Now, our objective is to determine the phase angle � that results in a maximum 
amplitude in the diffusion operator stage. This can be achieved by taking the deriva-
tive of (2) with respect to the angle � and setting it equal to zero:

(3)RY
�
=

[
cos

�

2
−sin

�

2

sin
�

2
cos

�

2

]
#

(4)RYZ
��

= RY
�
RZ
�
=

[
cos

�

2
−sin

�

2

sin
�

2
cos

�

2

][
1 0

0 −1

]
=

[
cos

�

2
sin

�

2

sin
�

2
−cos

�

2

]
#

(5)
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Notice how (6) can be restated by integrating the operations of the Hadamard and 
Pauli-X gates as follows:

where

Similarly,

Therefore, (6) can be rewritten as follows:

Equation (6) can be solved for different values of n . A program in MATLAB is 
developed to give us the results of the angle � so that we get maximum amplitudes 
after reflection about the mean. Let’s Initially begin by considering the case where 
n = 2 . Quirk simulator from IBM is used for simulating the results using a gate-
block diagram as in Fig. 1.

The output of each step is as follows:
Step 1 (initialization to create balanced superposition):

(6)

(7)

R = HX =
1√
2

�
1 1

1 −1

��
0 1

1 0

�
=

⎡
⎢⎢⎣

1√
2

1√
2

−
1√
2

1√
2

⎤
⎥⎥⎦

R =

[
cos

−�

4
−sin

−�

4

sin
−�

4
cos

−�

4

]
= RY

−�∕2

R
† = (HX)† =

[
cos

−�

4
−sin

−�

4

sin
−�

4
cos

−�

4

]†
=

[
cos

�

4
−sin

�

4

sin
�

4
cos

�

4

]
= R

Y

�∕2

(8)

Fig. 1  Modified Grover search algorithm for n = 2 qubits, showing the substitution of the Z gate with the 
gate RYZ

��
 . The subsequent analysis breaks down each highlighted step above
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Step 2 (marking the target using the oracle’s phase flip):

Step 3 (remains unchanged as before):

Step 4:

Step 5:

The optimal angle is found from (6) to be zero for this 2-qubit example. There-
fore, the output of step 5 becomes:

Step 6:

Substituting � = 0 , the output becomes:

Which is the same result from step 5.
Step 7:

Which results to −�11⟩ with a probability 100% and a single iteration 
( Noptimal = 1).

Since the optimal angle for this example was found to be zero and the number 
of iterations for the probability of success is only one, we noticed no impact of this 
rotation on speeding up the process. Let’s move to scenarios involving higher num-
ber of qubits requiring additional iterations, employing the proposed approach.

Solving (6) for n = 2, 3, 4, 5, 6, 7 , we obtain the following corresponding phases 
shown in Table 1.

1

2
(�00⟩ + �01⟩ + �10⟩ + �11⟩)

1

2
(�00⟩ + �01⟩ + �10⟩ − �11⟩)

1

2
(�00⟩ + �01⟩ + �10⟩ − �11⟩)

1

2
(−�00⟩ + �01⟩ + �10⟩ + �11⟩)

1

2

�
−�00⟩ + �01⟩ +

�
cos

�

2
+ sin

�

2

�
�10⟩ +

�
sin

�

2
− cos

�

2

�
�11⟩

�

1

2
(−�00⟩ + �01⟩ + �10⟩ − �11⟩)

1

2

��
sin

�

2
− cos

�

2

�
�00⟩ +

�
cos

�

2
+ sin

�

2

�
�01⟩ + �10 ⟩ − �11⟩

�

1

2
(−�00⟩ + �01⟩ + �10⟩ − �11⟩)

1

2

�
sin

�

2
�00⟩ +

�
1 − cos

�

2

�
�01⟩ + sin

�

2
�10⟩ +

�
−cos

�

2
− 1

�
�11 ⟩

�
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We can readily derive a general formula for the phase angle by examining 
Table 1, yielding:

For the case where n = 2 in (9), the result is � = 0 , explaining the attainment of 
a 100% probability of locating the target state in a single iteration (Classically, we 
need four iterations for this problem in the worst-case scenario). However, the stand-
ard Grover diffusion operator assumes � = 0 for all iterations and for any number 
of qubits, which is found not to be optimal. It should be noted that solving (6) for n 
greater than 12 qubits demands significant memory resources and entails a slow pro-
cessing speed. Another insight observed from (9) is that, as N increases, the phase 
angle � iteratively approaches a phase angle of �

2
.

Nevertheless, Eq. (9) does not provide information regarding the change in phase 
with each iteration. We want to examine how the inclusion of amplitude amplifica-
tion affects this equation. To accomplish this, the ratio between two amplitudes in 
every two successive iterations is computed. In the initial iteration, the amplitudes of 
all states, including the target state a1 , are identical, given that they are balanced uni-
form states. Consequently, the mean m1 equals the amplitude of the target state, i.e., 
m1 = a1 =

1√
N

.
In the second iteration, we initially compute the newly amplified amplitude result-

ing from the reflection about the mean m1 . This gives us the amplitude m2 and a2:
m2 =

N−2

N
√

N
=

1√
N
−

2

N
√

N
 and a2 =

3N−4

N
�√

N
� =

3√
N
−

4

N
√

N

Proceeding in calculating the updated mean following the phase reversal and the 
new amplitude after reflecting about the mean, the following are formulas of ampli-
tudes for iterations to 1–7:

We can observe an elegant pattern linking each amplitude to the preceding and 
following amplitudes. The first term of all amplitudes increases by the amount 
(2i + 1) where i refers to the iteration index. The terms exhibit alternate changes in 
signs, similar to the sine and cosine expansions while the denominators show a rapid 
exponential decrease. The impact of the other terms is negligible and, therefore, can 
be disregarded, leaving only the first part participating into the amplitude. Observe 
also the proportion between every successive pair of amplitudes, expressed as 

(
2i+1

2i−1

)
 

which is proportional to the ratio 
(

sin�
i+1

sin�
i−1

)
 . This augment can further be improved by 

reversing the indices added to unity, that is 
(

1 +
2i−1

2i+1

)
 . The ratio provides an approx-

imate relationship between the increment in phase angles during each two consecu-
tive iterations. Observe as well that this rate is not uniform but declines as iterations 

(9)� = 2tan−1
(

2n−2−1

2n−2

)
= 2tan−1

(
N−4

N

)
= 2tan−1

(
1 −

4

N

)
#

Table 1  Phase angles corresponding to maximum probability

Number of qubits (n) 2 3 4 5 6 7

Phase angle (�) 0 2tan
−1 1

2
2tan

−1 3

4
2tan

−1 7

8
2tan

−1 15

16
2tan

−1 31

32
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progress (see the last column in Table 2). This highlights the significance of the ini-
tial iterations, as they bear more importance compared to the subsequent ones, 
which remain relatively constant. As a result, this suggests to integrate this value 
into the ultimate rotation gate ( RYZ

��
–gate matrix). Therefore, (9) becomes:

Alternatively, we can revise Eq. (10) so that it remains independent of the itera-
tion number. This means that the phase angle remains constant, determined solely 
by the number of qubits (n) and is not influenced by the iteration index (i) as denoted 
by (9).

For the first iteration of the algorithm, we employ Eq. (11), while for the remain-
ing iterations, we use Eq. (12):

In the context of Eqs. (11 and 12), the phase angle denoted by � , calculated from 
Eq.  (9), is smaller than the � value in Eq.  (10). This variation is adjusted by the 
additional rotation to the state through applying a Hadamard gate in (12) which rep-
resents a rotation around the x + z axis. Specifically, for the first equation, we incor-
porate the ZRY

�
 gates into the operator, whereas for the second equation, we employ 

the gates HRY
�
 . The proposed approach is used to simulate the GSA problem and 

presented in the next section. All simulation programs are coded in MATLAB and 
are provided with this paper.

(10)�i =
(

2tan−1
(

2n−2−1

2n−2

))
+ 1 +

2i−1

2i+1
#

(11)

(12)

Table 2  Result of amplitude amplification at each iteration and the ratio between two successive ampli-
tudes

Iteration (i) Amplitude (a
i
) ∼

(
a

i+1

a
i

)

1 1√
N

–

2 3√
N

−
4

N

√
N

3

3 5√
N

−
20

N

√
N

+
16

N2

√
N

5

3

4 7√
N

−
56

N

√
N

+
112

N2

√
N

−
64

N3

√
N

7

5

5 9√
N

−
120

N

√
N

+
432

N2

√
N

−
576

N3

√
N

+
256

N4

√
N

9

7

6 11√
N

−
220

N

√
N

+
1232

N2

√
N

−
2816

N3

√
N

+
2816

N4

√
N

−
1024

N5

√
N

11

9

7 13√
N

−
364

N

√
N

+
2912

N2

√
N

−
9984

N3

√
N

+
16640

N4

√
N

−
13312

N5

√
N

+
4096

N6

√
N

13

11
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4  Simulation results

In the Quirk toolbox by IBM, the Grover algorithm example employs a 5-qubit, 
32-state configuration to illustrate how the standard algorithm functions in the
search process. For comparison with the proposed method, the same example is
used. While the standard algorithm requires 4 iterations, the proposed method
achieves an equivalent result with only 3 iterations, representing a 25% reduction
compared to the standard approach. The simulation is presented in Fig. 2, while the
example from Quirk can be accessed on the provided Quirk’s website. Observe the
distinction between the proposed method and the standard algorithm, as the pro-
posed approach introduces a mean distributed unevenly among the non-solution
states for all iterations (see the green narrow column in Fig. 2). For this example,
the probability of finding the good state using the proposed approach (here the state
�11111⟩ ) is 99.7461% versus 89.6936% for the standard algorithm.

Figure 3 presents comparison results for additional scenarios, considering num-
ber of qubits up to 13. The optimal number of iterations for the modified version

Fig. 2  Simulation of the modified Grover search algorithm for n = 5 qubits employing Eqs. (11, 12)

Fig. 3  Comparison between the standard and modified Grover search algorithm for n = 3, 4, 5, 6, 7, 8 . 
Red color is used to highlight the iteration that yields the maximum amplitude
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denoted by Noptimal is highlighted in red. The proposed method leads to an average 
decrease in the required number of iterations around 28% whereas for high search 
space, this improvement rises to 29.58% (Table 3). It should be noted that in sce-
narios involving a significant number of qubits ( n greater than 12), advanced CPU 
and GPU resources are required to simulate the problem (Fig. 4).

Precisely, the probability of success in the modified GSA’s equation exhibits a 
28.1017% average reduction of number of iterations reaching optimality in prob-
ability of success with only 0.72Noptimal iterations. Excluding the basic two-qubit 
scenario from this calculation, which is a special case involving only one iteration, 
results in an average enhancement by 30.65% in the number of iterations.

The original probability-of-success equation for the standard GSA is [7]:

where k is the iteration count. The modified approach adjusts the above equation to 
the following:

Here, (1 + Δ�) represents the compression factor of the probability function (the 
squared sine) which is approximately 

√
2 . This observation is understandable as the 

additional phase angle contributes to a decrease in the number of iterations required 
for this problem to attain its maximum probability evidenced in Fig. 5. The probabil-
ity of success represented by the y− axis increases as number of iterations increases 
(represented by the x− axis) until it reaches its optimal value Noptimal.

(13)P(success) = sin
2((2k + 1)�)

(14)P(success) = sin
2((2k + 1)((1 + Δ�)�))

Fig. 4  Comparison between the standard and modified Grover search algorithm for n = 9, 10, 11, 12, 13 . 
Red color is used to highlight the iteration that yields the maximum amplitude
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Concerning the number of gates needed by the proposed method, there is no 
extra gate required compared to the standard approach. In fact, implementing 
Eq. (8) instead of Eq. (6) results in a lower number of gates needed which is another 
improvement provided by this approach.

It should be noted that despite this improvement in the speed of success offered 
by the proposed approach, it does not result in a significant reduction in the algo-
rithm complexity determined by the number of times the oracle is called. In the 

standard algorithm, its complexity is represented by 
(

�

4

√
N

M
−

1

2

)
 oracle queries 

compared to 1√
2

�
�

4

�
N

M
−

1

2

�
 oracle queries for the modified algorithm which is 

still considered a quadratic speedup as in the standard algorithm.

5  Conclusion

This study introduced an improved version of the Grover search algorithm that 
aimed at maximizing the amplitudes, and consequently the probability, of desired 
states known as good, target or solution states. The proposed modification includes 
integrating both the amplitude-increasing ratio of consecutive iterations and the 
derivative of the Grover diffusion operator. This combination is employed to deter-
mine the optimal phase angle used for amplitude amplification by utilizing a rotation 
around the y + z–axis. The findings illustrate an average decrease in the required 
number of iterations to achieve a probability of success around 28% less compared 
to the standard Grover search algorithm. For large-scale search space, this improve-
ment rises to 29.58%. An additional alternative, which is similar in nature, is also 
illustrated by Eqs. (11 and 12), utilizing a fixed phase angle within the rotation gate 
around the y-axis. The proposed approach can be implemented with fewer gates if 
we choose to apply Eq. (8) instead of Eq. (6) which is used for the standard diffu-
sion. The research includes various case studies, including scenarios with up to 12 

Fig. 5  Comparison between the 
standard and modified Grover 
search algorithm for n = 13 last-
ing for 140 iterations
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qubits resulting in 4096 combinations of search entries. The simulation was con-
ducted using MATLAB and IBM’s Quirk programs.
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