

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2022-2023

College/ Institute	Erbil Technology College				
Department	Construction Materials and technology				
	department				
Module Name	Strength of Materials				
Module Code	STM352				
Degree	Technical Diploma Bachelor &				
	High Diploma Master PhD PhD				
Semester	6				
Qualification					
Scientific Title	Lecturer				
ECTS (Credits)	7				
Module type	Prerequisite Core Assist.				
Weekly hours	4				
Weekly hours (Theory)	(4)hr Class (171)Total hrs				
	Workload				
Weekly hours (Practical)	()hr Class ()Total hrs Workload				
Number of Weeks	12				
Lecturer (Theory)	Dr. Guler Fakhradddin Muhyaddin				
E-Mail & Mobile NO.	Guler.muhyaddin@epu.edu.iq				
Lecturer (Practical)					
E-Mail & Mobile NO.	0750 4480587				
Websites					

Course Book

Course Description	The course named "Strength of Materials" or "Mechanics of Materials" deals with, Concept of stress, Stresses and strains, Axial loading and axial deformation, Hook's law, statically indeterminate members, Stresses due to temperature, Torsion, Internal forces in beams, pure bending or Beam theory, Transverse loading and shear stresses in beams, beam deflection, Transformation of stresses and strains. Principal stresses and strains, in addition to Axially compressed members and buckling of columns.
Course objectives	 Be aware of the mathematical background for the different topics of strength of materials introduced in this course. Understanding of stress concept and types of stresses. Understanding of stress strain relationship and solving problems. Understanding of internal forces in beams, how to draw shear force and bending moment diagrams. Understanding of beam analysis, stresses in beams, beam theory and shear stresses. Understanding of torsion in shafts, determination of shear stresses and twisting angle due to torsion. Understanding of methods of calculation beam deflection. Understanding of transformation of stresses and constructing of Mohr's Circle. Understanding of Axially compressed members and buckling of columns.
Student's obligation	Attending the lecture is a fundamental part of the course. You are responsible for material presented in the lecture whether or not it is discussed in the textbook. You should expect questions on the exams to test your

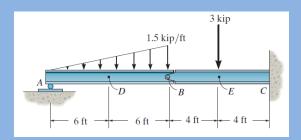
	unde	retanding of conce	ents discussed	in the lectu	ure and in the homework	
		understanding of concepts discussed in the lecture and in the homework				
	assignments.					
	It can be very helpful to study with a group. This type of cooperative learning					
	is en	is encouraged; however, be sure that you have a thorough understanding of				
	the o	concepts besides th	e mathematica	l steps used	to solve a problem. You	
	must	must be able to work through the problems on your own.				
Required Learning Materials	Data Show, Handout lecture notes and white board notes.					
	Task		Weight (Marks)	Due Week	Relevant Learning Outcome	
	F	Paper Review				
		Homework	14%			
	Assignments	Class Activity	2%			
		Report	24%			
Evaluation		Seminar				
		Essay				
		Project				
	Quiz		4%			
	Lab.					
	Midterm Exam		16%			
	Final Exam		40%			
	Total		100%			
	To establish an understanding of the fundamental concepts of mechanics of					
	deformable solids; including static equilibrium, geometry of deformation, and					
Chasifia laarning	material constitutive behavior. To provide students with exposure to the					
Specific learning	systematic methods for solving engineering problems in solid mechanics. To					
outcome:	discuss the basic mechanical principles underlying modern approaches for					
	design of various types of structural members subjected to axial load, torsion,					
	bending, transverse shear, and combined loading. To build the necessary					
	theoretical background for further structural analysis and design courses.					
	I					

1. Strength of Materials (Fourth Edition) Ferdinand L. Singer , Andrew Pytel

2. Mechanics of Materials (sixth Edition) Ferdinand P. Beer, E. Russell Johnston, Jr.

- 3. Mechanics of Materials (Seventh Edition) R.C. Hibbeler.
- 4. Intermediate Mechanics of Materials (2001) J.R BARBER.
- 5. Mechanics of Materials (2002) Madhukar Vable.
- 6. Mechanics of Materials (Seventh Edition) James M. Gere, Barry J. Goodno.

Course References:


- 7. Mechanics of Materials (2000) Anthony Bedford, Kenneth M. Liechti.
- 8. Introduction to Mechanics of Materials (1989) William F. Riley, Loren W. Zachary.
- 9. Mechanics of Materials (Fourth Revised Edition) James M. Gere, Stephen
- P. Timoshenko.
- 10. Mechanics of Materials (Sixth Edition) William F. Riley, Leroy D. Sturges, Don H. Morris.
- 11. Mechanics of Materials (Second Revised Edition) Roy R. Craig, Jr.
- 12. Mechanics of Materials (1985) David Q. Fletcher.
- 13. Mechanics of Materials (Second Edition) E. P. Popov

Course topics (Theory)	Week	Learning Outcome
Stress, strain, material	1,2,3	Review of equilibrium principles. Concepts of stress and
properties		strain. Stress components in Cartesian coordinates. Normal
		and shear stresses. Safety factors and design. Deformation
		and strain. Normal and shear strains. Mechanical properties
		of materials. Constitutive relations. Hooke's Law

Axially loaded bars	4	Axial deformation. St. Venant's Principle. Statically			
		determinate and indeterminate axial loading assemblies.			
		Composite bars. Thermal stresses.			
Torsion	5	Torsional deformation of circular shafts. Torque and angle			
		of twist. Statically determinate and indeterminate torsional			
		loading assemblies. Composite shafts. Thin walled			
		members. Design of shafts			
Stresses and deflections in	6,7,8,9,10	Pure bending of beams. Second moments of area. Parallel			
beams		axis theorem. Principal axes and moments of area. Flexure			
		formula. Flexural stresses. Biaxial bending. Eccentric axial			
		load. Composite beams. Derivation of the differential			
		equations for flexural beam deflections. Boundary			
		conditions. Deflection curve. Statically indeterminate			
		beams. Shear stresses in beams. Transverse shear and the			
		shear formula. Limitations of the shear formula. Shear flow			
		and shear center. Design of beams.			
Transformation of stress and	11	Transformation of stress and strain at a point. Stress			
strain		transformation equations. Mohr's circle. Principal stresses			
		and maximum in-plane shear stress. Combined loading.			
Buckling of columns	12	Stability. Euler buckling load. Issues in column design.			

Questions Example Design:

Q1: Determine the resultant internal loadings in the beam at cross sections through points D and E. Point E is just to the right of the 3-kip load.

Solution:

Support Reactions: For member AB

$$\zeta + \Sigma M_B = 0;$$
 9.00(4) - $A_y(12) = 0$ $A_y = 3.00 \text{ kip}$

$$\xrightarrow{+} \Sigma F_x = 0;$$
 $B_x = 0$

$$+\uparrow \Sigma F_y = 0;$$
 $B_y + 3.00 - 9.00 = 0$ $B_y = 6.00 \text{ kip}$

 $\it Equations of Equilibrium: For point D$

$$\stackrel{+}{\rightarrow} \Sigma F_x = 0;$$
 $N_D = 0$ Ans.

$$+\uparrow \Sigma F_{v} = 0;$$
 $3.00 - 2.25 - V_{D} = 0$

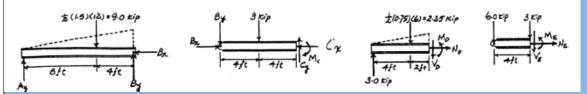
$$V_D = 0.750 \text{ kip}$$
 Ans.

$$\zeta + \Sigma M_D = 0;$$
 $M_D + 2.25(2) - 3.00(6) = 0$

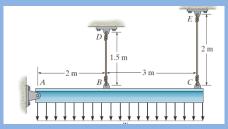
$$M_D = 13.5 \text{ kip} \cdot \text{ft}$$
 Ans.

Equations of Equilibrium: For point E

$$\stackrel{+}{\rightarrow} \Sigma F_x = 0;$$
 $N_E = 0$ Ans.


$$+\uparrow \Sigma F_y = 0;$$
 $-6.00 - 3 - V_E = 0$

$$V_E = -9.00 \text{ kip}$$
 Ans.

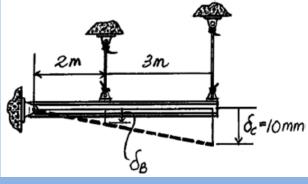

$$\zeta + \Sigma M_E = 0;$$
 $M_E + 6.00(4) = 0$

$$M_E = -24.0 \text{ kip} \cdot \text{ft}$$
 Ans.

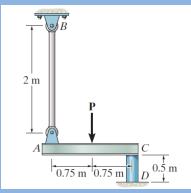
Negative signs indicate that M_E and V_E act in the opposite direction to that shown on FBD.

Q2: The rigid beam is supported by a pin at A and wires BD and CE. If the distributed load causes the end C to be displaced 10 mm downward, determine the normal strain developed in wires CE and BD.

Solution:


Since the vertical displacement of end C is small compared to the length of member AC, the vertical displacement δ_B of point B, can be approximated by referring to the similar triangle shown in Fig. a

$$\frac{\delta_B}{2} = \frac{10}{5}; \qquad \delta_B = 4 \text{ mm}$$


The unstretched lengths of wires BD and CE are $L_{BD} = 1500\,\mathrm{mm}$ and $L_{CE} = 2000\,\mathrm{mm}$.

$$\left(\varepsilon_{\text{avg}}\right)_{BD} = \frac{\delta_B}{L_{BD}} = \frac{4}{1500} = 0.00267 \text{ mm/mm}$$
 Ans.

$$(\varepsilon_{\text{avg}})_{CE} = \frac{\delta_C}{L_{CE}} = \frac{10}{2000} = 0.005 \text{ mm/mm}$$
 Ans.

Q3: The stress–strain diagram for a polyester resin is given in the figure. If the rigid beam is supported by a strut AB and post CD, both made from this material, and subjected to a load of P=80 kN, determine the angle of tilt of the beam when the load is applied. The diameter of the strut is 40 mm and the diameter of the post is 80 mm.

Solution:

From the stress-strain diagram,

$$E = \frac{32.2(10)^6}{0.01} = 3.22(10^9) \text{ Pa}$$

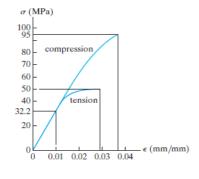
Thus.

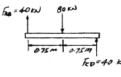
$$\sigma_{AB} = \frac{F_{AB}}{A_{AB}} = \frac{40(10^3)}{\frac{\pi}{4}(0.04)^2} = 31.83 \text{ MPa}$$

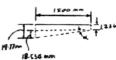
$$\varepsilon_{AB} = \frac{\sigma_{AB}}{E} = \frac{31.83(10^6)}{3.22(10^9)} = 0.009885 \text{ mm/mm}$$

$$\sigma_{CD} = \frac{F_{CD}}{A_{CD}} = \frac{40(10^3)}{\frac{\pi}{4}(0.08)^2} = 7.958 \text{ MPa}$$

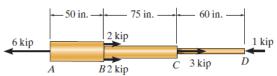
$$\varepsilon_{CD} = \frac{\sigma_{CD}}{E} = \frac{7.958(10^6)}{3.22(10^9)} = 0.002471 \text{ mm/mm}$$


$$\delta_{AB} = \varepsilon_{AB} L_{AB} = 0.009885(2000) = 19.771 \text{ mm}$$


$$\delta_{CD} = \varepsilon_{CD} L_{CD} = 0.002471(500) = 1.236 \text{ mm}$$


Angle of tilt α :

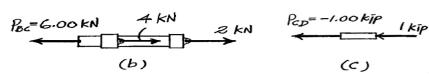
$$\tan \alpha = \frac{18.535}{1500}; \quad \alpha = 0.708^{\circ}$$


Ans.

Q4: The copper shaft is subjected to the axial loads shown. Determine the displacement of end A with respect to end D. The diameters of each segment are dBC = 2 in., and dCD = 1 in. Take $Ecu = 18(10)^3$ ksi. dAB = 3 in.

Solution:

The normal forces developed in segment AB, BC and CD are shown in the FBDS of each segment in Fig. a, b and c respectively.


The cross-sectional area of segment *AB*, *BC* and *CD* are $A_{AB} = \frac{\pi}{4} (3^2) = 2.25\pi \text{ in}^2$, $A_{BC} = \frac{\pi}{4} (2^2) = \pi \text{ in}^2$ and $A_{CD} = \frac{\pi}{4} (1^2) = 0.25\pi \text{ in}^2$.

PAB=6 Kip

Thus

$$\begin{split} \delta_{A/D} &= \, \Sigma \frac{P_i L_i}{A_i E_i} = \frac{P_{AB} \, L_{AB}}{A_{AB} \, E_{Cu}} + \frac{P_{BC} \, L_{BC}}{A_{BC} \, E_{Cu}} + \frac{P_{CD} L_{CD}}{A_{CD} \, E_{Cu}} \\ &= \frac{6.00 \, (50)}{(2.25 \pi) \big[18 (10^3) \big]} + \frac{2.00 \, (75)}{\pi \, \big[18 (10^3) \big]} + \frac{-1.00 \, (60)}{(0.25 \pi) \, \big[18 (10^3) \big]} \\ &= 0.766 (10^{-3}) \, \text{in.} \end{split}$$

The positive sign indicates that end A moves away from D.

Q5: The spherical gas tank is fabricated by bolting together two hemispherical thin shells. If the 8-m inner diameter tank is to be designed to withstand a gauge pressure of 2 MPa, determine the minimum wall thickness of the tank and the minimum number of 25-mm diameter bolts that must be used to seal it. The tank and the bolts are made from material having an allowable normal stress of 150 MPa and 250 MPa, respectively.

Solution:

Normal Stress: For the spherical tank's wall,

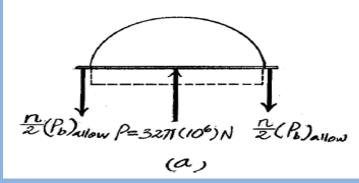
$$\sigma_{\text{allow}} = \frac{pr}{2t}$$

$$150(10^6) = \frac{2(10^6)(4)}{2t}$$
 $t = 0.02667 \text{ m} = 26.7 \text{ mm}$
Ans.

Since $\frac{r}{t} = \frac{4}{0.02667} = 150 > 10$, thin-wall analysis is valid.

Referring to the free-body diagram shown in Fig. a, $P = pA = 2(10^6) \left[\frac{\pi}{4}(8^2)\right] = 32\pi(10^6) \text{ N. Thus,}$

$$+ \uparrow \Sigma F_y = 0; \qquad 32\pi \left(10^6\right) - \frac{n}{2} \left(P_b\right)_{\text{allow}} - \frac{n}{2} \left(P_b\right)_{\text{allow}} = 0$$


$$n = \frac{32\pi \left(10^6\right)}{\left(P_b\right)_{\text{allow}}} \tag{1}$$

The allowable tensile force for each bolt is

$$(P_b)_{\rm allow} = \sigma_{\rm allow} A_b = 250 (10^6) \left[\frac{\pi}{4} (0.025^2) \right] = 39.0625 (10^3) \pi N$$

Substituting this result into Eq. (1),

$$n = \frac{32\pi (10^6)}{39.0625\pi (10^3)} = 819.2 = 820$$
 Ans.

Extra notes:		
T		
External Evaluator		
Approved		
Approved		
~ (, \		
100		
June (
	 	 •