

Module (Course Syllabus) Catalogue

2022-2023

College/ Institute	Erbil Technology College		
Department	Department of AIT		
Module Name	Power Electronics		
Module Code	POE303		
Semester	3		
Credits	6		
Module type	Core		
Weekly hours			
Weekly hours (Theory)	(2)hr Class	(86)hr Workload	
Weekly hours (Practical)	(2)hr Class	(64)hr Workload	
Lecturer (Theory)	Farah A. Abed		
E-Mail & Mobile NO.	Farah.abed@epu.edu.iq		
	07503527165		
Lecturer (Practical)	Farah A. Abed		
E-Mail & Mobile NO.	Farah.abed@epu.edu.iq		
	07503527165		

Course Book

Course Description	This is the first course in Power Electronics. Students will learn about specific areas of application and the reasons Power Electronics is becoming popular in areas traditionally occupied by analog electronics. The course will cover applications in conversion and control of power using Power semiconductor devices, physics of their structure and operation and passive components in power circuits. Students will also learn the principles governing the operation of converters, different standard topologies, applications in power systems, motor drives, and applications in renewable energy sources.
Course objectives	The course is prepared for final class students. It's highlighting on Power Electronic devices, its characteristics. Important circuit component design and analysis concepts. Controlled and uncontrolled phase rectifier circuits. Types of transistors and their applications. DC to DC converter. DC to AC inverter. IC circuits. Operational Amplifiers and their applications. Motor drives and Power electronic applications with renewable energy conversions.
Student's obligation	Respect A student has an obligation to exhibit honesty and to respect the ethical standards of the profession in carrying out his/her academic assignments. Without limiting the application of this principle. Attendance Missed classes will not be compensated including the quizzes and the scheduled assignments. The students will lose marks on unattended classes with quizzes unless a legal document or authorized leave is presented which should explain the excuse of the absence. However, the absent student should take the responsibility for making up the missed lecture.
	The lectures format
	The lectures are divided on four weekly hours (two hours theoretically and two hours practically). Mainly, the first two theoretical hours will be dedicated for the topic backgrounds and the main principles. Notes and handouts are given to the students containing the detail of the theoretical topics. Theoretical lectures will be assisted by presentations using white board and data show. Discussion time is provided for the students for questions. The first practical hour will be dedicated for how to works in the laboratory, health and safety, how to use equipment, boards,

	components, and wire connection to do experiments and reports.				
	Students should submit every week a report about the previous				
	experiment.				
	Questions				
	Asking questions about unclear material is an important part of the				
	classroom experience. It is not uncommon for students to have similar				
	difficulties, so speaking up will help everyone understand the discussed				
	information. Teachers can also benefit from a student's questions. By				
	finding out what subjects are hard to understand, instructors can adjust				
	their lectures to clear up confusing topics.				
	Assignment				
	A student must submit the assignment on moodle app. every week and				
	also write a report about wh	hat he/she was studied	l in the laboratory.		
Assassment scheme	25% Mid Term (Theory and	l practical)	inon)		
Assessment scheme	40% Assignment (report, pa	aper, nonnework, sem	mar)		
	15% final theory				
	After taking this course, stu	dents have ability to:			
	1. Understand the need, use	e and limitations of P	ower Electronics		
	2 Appreciate the linkage of Power Electronics with electromagnetics				
Specific learning	2. Appreciate the linkage of Tower Electronics with electroniagnetics,				
outcome:	machines and emerging application areas like renewables, smart grids				
	and high frequency applications				
	2. Understand the factors offecting shoise of devices in power				
	5. Understand the factors affecting choice of devices in power				
	1 Thomas L Floyd	Flootropio dovicos	sixth adition Convright		
	1. Inomas L. Floyd, Electronic devices, sixth edition, Copyright				
	@ 2004, 2002, 1999, 1996. 1992, 1988, 1984 by Pearson				
	Education, Inc., Upper Saddle River, New Jersey Pearson				
	Prentice Hall.				
Course References:	2. S. CHAND, R.S.SEDHA, A Textbook of Electronic circuits				
	2007. 2 Danie Ferreen Introduction to normal electronics. Drives dan d				
	3. Denis Fewson, introduction to power electronics, Printed and				
	bound in Great Britain by J W Arrow smith Ltd, Bristol, 1998.				
	4. Muhammad H. Rashid, SPICE for Power Electronics and				
	Electric Power, Second Edition, Published in 2006 by CRC				
	Press.Handbook-Six Volume Set, CRC press.				
		Wash	Learning		
Course topics (Theory)		VV EEK	Outcome		
(Power electronics) Definition an	d key characteristics,	1			
Semiconductor devices in power electronics, Power					
electronic applications.					
		1	1		

Rectification: (Single phase half wave rectifier with resistive	2	
load, Single phase full wave rectifier with resistive load)		
Three phase star rectifiers, Three phase bridge rectifiers.	3	
Filtering system in rectifier circuits.	4	
structure Basic transistor operation Relative comparison of	4	
amplifier configuration). BJT as switch		
Transistor switching – performance, Improvement of	5	
transistor switching time, Main features of BJT)		
Field effect transistor (MOSFET), Symbol & output	6	
characteristics, Main features of MOSFET.	0	
	_	
Insulated gate bipolar transistor (IGBT), Symbol & output	7	
characteristics, and Main features of IGBT.		
Uni-junction transistor (UJT). Basic construction.	8	
Equivalent Circuit, A UJT Application.	0	
OPERATIONAL AMPLIFIERS, Typical packages, ideal	9	
op-amp - practical op-amp, Input Signal Modes		
Negative Feedback, On-Amn Gains	10	
reguire recublex, op rinp Suns	10	
APPLICATIONS OF OPERATIONAL AMPLIFIERS,	11	
Inverting Amplifier, noninverting Amplifier.by using the		
wattmeter, the connection for calculating active		
power, reactive power and apparent power.		
Inverting Summing Amplifier, noninverting Summing	12	
Amplifier, Integrators, Differentiator, Zero-level Detection,		
Nonzero-Level Detection.		
		T •
Practical Topics	Week	Learning
		Outcome
Single phase half-wave rectifier resistive load.	1	
Single phase full-wave bridge rectifier resistive load		
Three phase half-wave rectifier resistive load.	2	
Three phase full wave bridge rectifier.		
Transistor BIT as a switch	3	
	5	

FET/MOSFET characteristics	4	
MOSFET speed control.	5	
IGBT characteristics.	6	
IGBT speed control.	7	
UJT characteristics.	8	
Operational Amplifier (OP-Amplifier) applications as inverting amplifier	9	
Operational Amplifier (OP-Amplifier) applications as non-inverting amplifier.	10	
Operational Amplifier (OP-Amplifier) applications as multivibrator amplifier.	11	
Operational Amplifier (OP-Amplifier) applications Zero crossing amplifier.	12	

Q1/ Answer five of the following:

- 1- By relation show the condition of the range values of resistance(R) that ensure firing of the UJT.
- 2- By drawing show the open loop frequency response curve (gain bandwidth)

of OP-amp.

- 3- By relation show the condition that makes BJT saturated in the circuit.
- 4- By drawing show the characteristic curve of TRIAC.
- 5- By drawing show the circuit of over voltage protection of SCR.
- 6- By relation show the difference of V_{dc} in the three phase half wave and full wave uncontrolled rectifier. (10 Marks)

Q2/A- For a single phase full wave bridge controlled rectifier circuit, supplied with (340sin314t), R=20 Ω and inductive L=200mH. If firing angle

(α =60°) and conduction angle (θ =135°). Find:

For discontinuous case:

- 1- Phase angle (ϕ). 2- Average load voltage (V_{dc}).
- 3- Average load current (I_{dc}) .

For continuous case:

- 1- Average load voltage (V_{dc}).
- 2- Average load current (I_{dc}) .

(15 Marks)

B- Draw the characteristic curve of IGBT with showing the operation regions.

Q3/A- For the circuit shown, find:

(10Marks)

- 1- The closed loop gain (A_{cl}) .
- 2- Common-mode rejection ratio (CMRR).
- 3- Maximum operating frequency (f_{max}).
- If $(A_{cm}=0.001 \text{ and slew rate}=0.5 \text{V}/\mu\text{s})$.

B- For D-MOSFET, $I_{DSS}=18$ mA, and $V_{GS (ON)}$ =10V: (10Marks)

(5 Marks)

- 1- Is this device n-channel or p-channel?
- 2- Determine I_D for V_{GS} =4V.
- 3- Determine I_D for V_{GS} =-4V.

C- Write down modes of thyrisistor (SCR) triggering turn ON and turn OFF. (10Marks)

Q4/A- For a buck-chopper supplied by a 200Vdc have ON time of 30ms and OFF time of 10ms. Determine:

- 1- Chopper duty cycle (D). 2- Chopper frequency (f). 3-output load voltage (V_{dc}).
- **B-** What is the difference between differentiator and integrator OP-amp by: feedback- output waveform voltage- output voltage (V_{OUT}).

Q5/**A-** For the circuit below:

(10 Marks)

If R=20 Ω , L=0.5H, V_s=100Vand the latching current of SCR I_L=20mA is fired by the pulse of width 50 μ s. Determine the SCR triggers or not.

B- A half bridge inverter has Vb1=Vb2=50V, the load resistive is 10Ω , inverter frequency is 50 Hz. Determine the load power dissipation and sketch the load current diagram.

GOOD LUCK

.....

Lecturer

Assist. Prof. Dr. Farah A. Abed