

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue

2023-2024

College/ Institute	Technology Institute in Erbil		
Department	Automotive Engineering		
	Technology		
Module Name	Vehicle dynamics and Vibration		
Module Code	-		
Degree	Technical Diploma	Bachelor	
	High Diploma	Master PhD	
Semester	6th Semester, 3rd year.		
Qualification	PhD.		
Scientific Title	Lecturer		
ECTS (Credits)			
Module type	Prerequisite	Core 🔳 Assist.	
Weekly hours			
Weekly hours (Theory)	(4)hr Class	(100)Total hrs Workload	
Weekly hours (Practical)	(0)hr Class	()Total hrs Workload	
Number of Weeks	12		
Lecturer (Theory)	Dr. Dler Abdullah Ahmed		
E-Mail & Mobile NO.	Dler.ahmad@epu.edu.iq		
Lecturer (Practical)			
E-Mail & Mobile NO.			
Websites			

Course Book

Course Description	The course of vibration is designed to cover the fundamentals of free and forces vibration. This course aims students to understand the behaviour of vibration and how can reduce it. As well as the mathematical methods to solve vibration problems.					
Course objectives	The main purposes of the vibration are to understand, analyze, and reduce vibration in engineering mechanisms. As well as students learn to connect this subject with other subjects and apply it to analyze problems in various mechanical systems.					
Student's obligation	Missed classes will not be compensated including the quizzes and the scheduled assignments. The students will lose marks on unattended classes with quizzes unless a legal document or authorized leave is presented which should explain the excuse for the absence. However, the absent student should take responsibility for making up the missed lecture.					
Required Learning Materials						
Evaluation	Task		Weight (Marks)	Due Week	Relevant Learning Outcome	
	Paper Review					
	Assignments	Homework	10			
		Class Activity	2			
		Report	8			
		Seminar	8			
		Essay				
		Project				
	Quiz		8			
	Lab.					
	Midterm Exam		24			
	Final Exam		40			
	Total		100			

	1- Apply principles of vibration and mechanisms of motion.
Specific learning outcome:	2- Construct the equation of motion, velocity and acceleration.
	3- Find the natural frequency of different mechanical systems
	1- To construct the governing differential equation and its solution
	2- for a vibrating mass subjected to an arbitrary force.
	4. To decompose any periodic function into a series of simple
	harmonic motions using Fourier series analysis.
	5. To solve for the motion and the natural frequency for forced
	vibration of a single degree of freedom damped or undamped
	system.
	6. To obtain the complete solution for the motion of a single degree
	of freedom vibratory system (damped or undamped) that is
	subjected to non-periodic forcing functions.
	7. To solve vibration problems that contains multiple degrees of
	freedom.
	8. To obtain design parameters and indicate methods of solution for
	a complicated vibratory problem.
	1 Machanical Vibrations by Sinirsey S. Pao Fifth Edition 2011
Course	2. Machanical Vibrations theory and applications. S Graham
References:	Z- Mechanical vibrations theory and applications, 5 Granam
	2 Theory of Vibration with Application WT Themson
	5- Theory of vibration with Application, w.1. Thomson

Course topics (Theory)	Week	Learning Outcome
Introduction of vibration	1	1
Free vibration undamped vibration	2, 3	2, 3, 4, 5
Damped vibration , forced vibration	4, 5	2, 3, 4, 5
Fundamentals of Vehicle Dynamics	6	2, 3, 4, 5
Acceleration performance in vehicles	7, 8	2, 3, 4, 5
Break performance in vehicles	9	2, 3, 4, 5, 6
Road loads, mechanics of air flow around the vehicle	10, 11	2, 3, 4, 5
Aerodynamics forces, drag components	12	3, 4, 5, 6

Questions and Examples:

Example (1) :

A 1/4 kg mass is suspended by a spring having a stiffness of 0.1533 N/mm. Determine its natural frequency in cycles per second. Determine its statical deflection.

Solution: The stiffness is

$$k = 153.3 \text{ N/m}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{153.3}{0.25}} = 3.941 \text{ Hz}$$

The statical deflection of the spring suspending the $\frac{1}{4}$ -kg mass is obtained from the relationship $mg = k\Delta$

$$\Delta = \frac{mg}{k_{\rm N/mm}} = \frac{0.25 \times 9.81}{0.1533} = 16.0 \,\rm{mm}$$

EXAMPLE:

Model the system shown in figure below by a block attached to a single spring of an equivalent striffness

Extra notes:

External Evaluator

Assist. Prof. Dr. Muhammedtahir Malapoor

mohammedtaher.mulapeer@su.edu.krd