

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue

2023-2024

College/ Institute	Technology Ir	nstitute in Erbil		
Department	Mechanical and Energy			
Module Name	Air Condition	ing		
Module Code	AIC401			
Degree	Technical DiplomaBachelorHigh DiplomaMasterPhD			
Semester	4 th Semester, 2 nd y	vear.		
Qualification	Ph. D.			
Scientific Title	Lecturer			
ECTS (Credits)	7			
Module type	Prerequisite	Core 🔳 Assist.		
Weekly hours				
Weekly hours (Theory)	(2)hr Class	(168)Total hrs Workload		
Weekly hours (Practical)	(2)hr Class	(168) Total hrs Workload		
Number of Weeks	12			
Lecturer (Theory)	Dler Abdullah Ahmed			
E-Mail & Mobile NO.	Dler.ahmad@epu.edu.iq			
Lecturer (Practical)				
E-Mail & Mobile NO.				
Websites				

Course Book

Course Description	This course is prepared to provide a comprehensive understanding of the main principles of Air Conditioning engineering in such a way that the tutees will gain theoretical and practical experience for fundamentals, processes, Heating and cooling load calculation, duct design, and water system design related issues in real world application.				
Course objectives	The lectures are divided on four weekly hours. Mainly, the first two hours will be dedicated for the topic backgrounds and the main principles. Notes and hand-outs are given to the students containing the detail of the topics. This will be assisted by presentations using word and/or power point slides during the lecture time. Discussion time is provided for the students for questions. The second part of the week is practical time in which scientific experiments are done in the laboratory.				
Student's obligation	Missed classes will not be compensated including the quizzes and the scheduled assignments. The students will lose marks on unattended classes with quizzes unless a legal document or authorized leave is presented which should explain the excuse of the absence. However, the absent student should take the				
Required Learning Materials	All lectures prepared in soft and exhibit on data show. Also they are given to students in hard copy. Make about 10 activities and one intermediate exam during annual coarse.				
	TaskWeight (Marks)Due Week				
	Paper Review				
Evaluation	А	Homework	5		
	Ssig	Class Activity	2		
	uni	Report	5		
	ents	Seminar	5		
	U	Essay			

		Project				
	Quiz		8			
	Lab.	Report	10			
	Midte	erm Theory	10			
	Midterm Lab.		15			
	Theorem	ry Final Exam	20			
	Lab.	Final Exm	20			
	Total					
Specific learning outcome:	 Apply principles of heat transfer, thermodynamics and building engineering. understanding about the main principles of air conditioning. Design and/or implement engineering systems, components and processes to introduce solutions that meet specified needs. Design of heating and cooling load system and duct design. Identify, formulate, and solve real-life engineering issues. Think critically in dealing with engineering issues. 					
Course References:	1. 2. 3.	Cooling and He 2000 American A. R. Trott and conditioning ",1 2000 . C. P. Arora " Re McGraw Hill 19 تتليج " آلية الهندسة	eating Load Es Standard Inc. A T. Welch " Refri Third Edition, Bu frigeration and 84 . له تكييف الهواء والا	timation (TR Il rights rese geration and utter Worth I Air Condition Air Condition ب " مبادی هندس 1	COO2EN.PPT) © rved. l Air Heinemann , ning " .Tata مالد الجودي 986, خالد الجود	

Course topics (Theory)	Week	Learning Outcome
Heat transfer, conduction, conductivity, convection, radiation, heat transfer through wall, compound wall, over all heat transfer coefficient	1	1
Air conditioning and comfort, comfort condition, psychometric chart, fresh air	2	2, 3, 4, 5
Psychometric chart, sensible heat and total heat, contact factor, by pass factor	3	2, 3, 4, 5
Air humidification equipment's	4	2, 3, 4, 5
Heating load Calculation	5	2, 3, 4, 5
Heating system and applications	6	2, 3, 4, 5, 6
Cooling load calculation, internal and external loads	7	2, 3, 4, 5
Details of cooling load and solved example	8	3, 4, 5, 6
Design of air duct system, pressure drop in rectangular duct	9	3, 4, 5, 6
Air duct design types	10	2, 3, 4, 5, 6
Two pipe system, four pipe system, air and water system	11	3, 4, 5, 6
Water pumps, types, properties, laws, and selections	12	3, 4, 5, 6
Practical Topics	Week	Learning Outcome
Heat Balance in Air washer	1, 2	
Heating balance and coefficient of performance calculation for heating pump in refrigerant condition	3, 4	
Heating balance and coefficient of performance calculation for heating pump in heating condition	5,6	
Cooling capacity calculation in chilled water and steady of sensible cooling	7, 8	
Steady of pressure drop due to cooling and heating coils	9, 10	
Heat balance in piping system	11, 12	

Questions Example Design

Ex2: Meeting hall capacity is (400) person and dimensions (32 x 20 x 3)m³. Windows dimensions are (2 x 2)m² and door is (3 x 3)m² according to the figure. Overall heat transfer coefficient of the wall is (4.4 W/m².°C), door (1.3W/m².°C), ceiling (3.7W/m².°C) and windows (7.15W/m².°C). outdooe temperature and moisture content is (-2°C, 0.0015kg/kg dry air) and indoor is (21°C, 0.0076kg/kg dry air). Minimum fresh air required for each person is (3L/sec). Find the hall heating load if the type of the bulding is strong.

= 9.5°C
q _{w3} = 4.4 (32*3) (21-9.5)
= 4857.6 W
q _{w4} = 0
$q_{glass} = Ug A \Delta T$
= 7.15 * (8*2*2) (21-(-2))
= 5262.4 W
q _{door} = 1.3 * (3*3) (21-(-2))
= 269 W
q _{ceiling} = 3.7 (32*20) (21-(-2))
= 54464 W
حجم هواء التخلل الطبيعي:
V = volume x ach/hr /60
= (32*20*3) * 0.3 /60
= 9.6m³/min
q _s = 0.02 V (ti – to)
= 0.02 * 9.6 *(21-(-2))
= 4.416 KW
q _L = 50 V (Δg)
= 50 * 9.6 * (0.0076 – 0.0015)

```
= 2.928 Kw
حجم هواء التهوية اللازمة للاشخاص :
v = no. person x necessity of each person x 60/1000
  = 400 * 3 * 60/1000
  = 72 m<sup>3</sup>/min
q_{s} = 0.02 V (ti - to)
   = 0.02 * 72 * (21 - (-2))
   = 33.12 KW
q`<sub>L</sub> = 50 V (Δg)
   = 50 * 72 * (0.0076 - 0.0015)
   = 21.96 Kw
q_T = q_{w1} + q_{w2} + q_{w3} + q_{glass} + q_{door} + q_{ceiling} + q_s + q_L + q_s + q_L
   = 7286.4 + 4351.6 + 4857.6 + 5262.4 + 269 + 54464 + 4416+ 2928 + 33120
+21960
  = 138915 W
  = 139 KW / 3.517
  = 39.5 TR
```

Ex2: Meeting hall designed for (400) person, its dimensions are (32x20x3) m³. Windows and door dimensions are (2x2)m² and (3x3)m² respectively. Overall heat transfers of wall (4.4 W/m².°C), ceiling (3.7W/m².°C), windows (7.15W/m².°C) and door (1.3W/m².°C). external condition is (35°C, 0.01kg/kg dry air) and internal condition is (25°C, 0.007kg/kg dry air). Fresh air required for each person is (3L/sec). Find cooling load of the hall at (4PM), if the type of the building is strong.

 $q_{w1} = Uw \cdot A \cdot CLTD$

 $= 4.4 (32^*3 - 6^*2^*2)(16 + 10)$ = 5068.8 W $q_{w2} = 4.4. (20*3 - 2*2*2 - 3*3)(12 + 10)$ = 2270.4 W $t = t\mathbf{i} + \frac{2}{3} (t_o - t_i)$ = 25 + 2/3(35 - 25) = 31.7°C q_{w3} = Uw.A. ΔT q_{w3} = 4.4 (32*3) (31.7 - 25) = 2816 W $q_{w4} = 0$ $q_{glass} = Ug A CLTD$ = 7.15 * (8*2*2) (7 + 10)= 1601.6 W $q_{solar} = I \cdot \tau \cdot A$ $q_{solar(west)} = 605 \times 0.74 \times (2 \times 2 \times 2)$ = 3581.6 W $q_{solar(south)} = 98 \times 0.74 \times (6 \times 2 \times 2)$ = 1740.5 W

$$q_{s}^{s} = 0.02 V (ti - to)$$

= 0.02 * 72 *(35-25)
= 14.4 KW
 $q_{L}^{s} = 50 V (\Delta g)$
= 50 * 72 * (0.01 - 0.007)
= 10.8 Kw

 $q_T = 5068.8 + 2270.4 + 2816 + 1601.6 + 3581.6 + 1740.5 + 117 + 104192. + 1920 + 1440 + 14400 + 10800$

q_T = 149947.9 W

= 150KW ÷ 3.517

=42.6 TR.

Ex3/ Design the volume of the duct in the following plan if the maximum velocity in the main duct must not exceed (6m/s). Height of the main duct must not exceed (30cm), pressure drop at the curvatures is (8Pa) and outer doors (20Pa):

(1

No.	Part	Q (L/s)	<u>V (m/s)</u>	D (mm)	Pd (Pa/m)
1	AB	1600	<u>6</u>	600	0.4
2	BC	1200	<u>6</u>	500	0.7
3	CD`	800	<u>4</u>	500	0.5
4	BB`	400	<u>4</u>	360	0.6
5	CC,	400	<u>4</u>	360	0.6

2) assume constant pressure drop for each part while maximum velocity is (6m/s)

No.	Part	Q (L/s)	<u>Pd (Pa/m)</u>	V (m/s)	D (mm)
1	AB	1600	<u>0.4</u>	6	600
2	BC	1200	<u>0.4</u>	4.5	525

3	CD`	800	<u>0.4</u>	4.3	480
4	BB`	400	<u>0.4</u>	3.5	375
5	CC,	400	<u>0.4</u>	3.5	375

3) calculate maximum pressure drop through the system:

ΔP (CC`) = 34.4 – (5 x 0.4 + 3 x 0.4 + 8 + 20) = 3.2 Pa

Pd(CC`) = 3.2/3 = 1.067 Pa/m

 $\Delta P (BB) = 34.4 - (5 \times 0.4 + 8 + 20) = 4.4 Pa$

Pd(BB`) = 4.4/3 = 1.46 Pa/m

No.	Part	Q (L/s)	Pd (Pa/m)	V (m/s)	D (mm)
1	AB	1600	0.4	6	600
2	BC	1200	0.4	4.5	525
3	CD`	800	0.4	4.3	480
<u>4</u>	<u>BB`</u>	400	1.067	6	285
<u>5</u>	<u>CC`</u>	400	1.46	5.75	300

4) transfer the diameter of each part to the equivalent rectangle:

No.	Part	Q (L/s)	D (mm)	High(m)	Width(m)
1	AB	1600	600	<u>0.3</u>	<u>1.1</u>
2	BC	1200	525	<u>0.3</u>	<u>0.8</u>
3	CD`	800	480	<u>0.3</u>	<u>0.7</u>
4	BB`	400	285	<u>0.2</u>	<u>0.3</u>
5	CC,	400	300	<u>0.2</u>	<u>0.4</u>

Extra notes:

External Evaluator:

Prof. Dr. Latef Muhammed Ali