Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2023-2024

College/ Institute	Erbil Technology College		
Department	Renewable Energy Technology Dept.		
Module Name	Mathematics		
Module Code	MAT104		
Degree	Technical Diploma	\square	Bachelor
	High Diploma	Master	PhD
Semester	First semester		
Qualification	Ph.D.		
Scientific Title	Lecturer		
ECTS (Credits)	7		\square
Module type	Prerequisite	Core Assist.	
Weekly hours			
Weekly hours (Theory)	(4) hr Class	(155)Total hrs Workload	
Weekly hours (Practical)	$($)hr Class	()To	I hrs Workload
Number of Weeks	12		
Lecturer (Theory)	Dr. Dler Abdullah Ahmed		
E-Mail \& Mobile NO.	Dler.ahmad@epu.edu.iq		
Lecturer (Practical)			
E-Mail \& Mobile NO.			
Websites			

Course Book

Course Description	This course is designed to provide a firm foundation inbeginning Calculus for first-year students. The topics covered arethose listed in "The topics". Each topic will be approached from avariety of ways, providing students the opportunity to solve problems in more than one way, graphically and analytically. Study, through the linear system of equations (formulation and solving)and presenting in Matrix notation. The introduction of the limit, continuity, differentiation, and integration, for a function of one variable. Topicsinclude application on integration and numerical solution of integration.
Course objectives	- To review some necessary terms and methods of algebra. - To discuss equivalent equations and to develop techniques for solving linear, fractional, radical, and quadratic equations. - To explore the real of functions. - To recognize the different forms of equation lines, graph quadratic functions, and solve linear systems. - To Study exponential and logarithmic functions. - To introduce matrices, homogeneous and homogeneous systems. - To know the definition of a derivative and apply the rules for differentiation. - To define indefinite integrals and basic integration formulas.
Student's obligation	- Class attendance is important, and attendance will be taken at every lecture. - Each student is expected to participate in class discussions and ask questions when topics need clarification. - No phone or texting during lecture.
Required Learning Materials	

		Task	Weight (Marks)	Due Week	Relevant Learning Outcome
		aper Review			
		Homework	10		
		Class Activity	2		
	$\frac{0}{09} .$	Report	8		
	$\stackrel{3}{0}$	Seminar	8		
Evaluation	$\stackrel{\rightharpoonup}{*}$	Essay			
		Project			
	Qu		8		
	La				
		term Exam	24		
		Exam	40		
	To				
Specific learning outcome:	1equ 2form 3func 4- the 5- vari $6-R$	olve fractional and tions. lve quadratic equ la derstand what a ons termine interce omain and rang olve systems of bles by eliminat cognize and grap	radical equ s by facto ion is, dete apply the a function r equation addition, ponential	that le by using domain al line, a grap ooth two stitution garithmi	to linear e quadratic nd evaluate and determine nd three nctions.
Course References:		George B.Tho Howard Anton Eighth Edition Howard Anton Geometry", fifth Sanat k. Adhik Mathematics("Calculu Bivens, an 05. bert Herr," dition, 199 "Basic of me-II) ", fir	ernatio phen ulus with sional tion,20	Edition, 2005. "Calculus", nalytic

		Outcome

Questions Example Design

Q1/ Derive the following functions:

1) $y=\frac{x^{2} \cdot \operatorname{Sin} x}{\operatorname{Cos} 2 x} \quad$ 2) $y=\stackrel{4}{e}^{3 x}$
$e^{4 x}$
2) $y=. \operatorname{Ln} x$
3) $y=\left(x^{3}+2 x\right)^{24}$

Q2/ Find the magnitude of the following complex numbers:

1) $(4+j 2)(4-j 3)$

$$
\text { 4) } \frac{(1-\mathrm{j} 7)}{(2+\mathrm{j} 2)}
$$

2) $-6\left\langle 30^{\circ} * 8\left(75^{\circ}\right.\right.$

$$
\text { 5) } \frac{12\left\langle 54^{\circ}\right.}{6\left\langle 45^{\circ}\right.}
$$

3) $i(3+2 i)-3 i+4$

3/ Integrate the following items:

1) $\int \frac{x^{2}}{x^{3}+3} d x$
2) $\int \operatorname{Sec}^{2} 4 x d x$
3) $\int \frac{x+3}{x^{2}} d x$
$4 \int e^{5 x} d x$
4) $\int\left(\sqrt{x^{3}}+2^{x^{3}}\right) d x$

Extra notes:

External Evaluator

