

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Mathematics II) Catalogue

2022-2023

	Eshil Technical Estim			
College/ Institute	Erbii Technical Engin	leering College		
Department	Mechanical and Energy Engineering Techniques			
Module Name	Mathematics II			
Module Code	MAT205			
Degree	Technical Diploma	Bachler		
	High Diploma	Master PhD		
Semester	Second			
Qualification	PhD in Mechanical E	ngineering		
Scientific Title	Lecturer			
ECTS (Credits)	6			
Module type	Prerequisite Core Assist.			
Weekly hours	4 hrs			
Weekly hours (Theory)	(4) hr Class	(52) Total hrs Workload		
Weekly hours (Practical)	()hr Class	()Total hrs Workload		
Number of Weeks	12 weeks			
Lecturer (Theory)	Dr. Dlair O. Ramadan			
E-Mail & Mobile NO.	Dlair.o.ramadan@epu.edu.iq, 07702374010			
Lecturer (Practical)				
E-Mail & Mobile NO.				

Course Description	Calculus is the base for different scientific specifications. To explain any natural phenomenon, we translate this phenomenon to a mathematical model which lets us deal with the problem easily. Also, when we have lab data, we can graph these data and get best curve for these points and find a function for this curve by using calculus. Topics studied include Integration, application of definite integrals, transcendental functions, techniques of integration, introduction to matrices and how to solve linear equation. It is very important to emphasize that this is a problem-oriented class and the only way that the material can be mastered is with practice solving problems in addition to homework problems.
Course objectives	 At the end of this course the student will be able to: 1. To provide an introduction to the fundamentals of calculus. 2. To learn the application of mathematics in real life problems and analyzing the results.
Student's obligation	 Homework will be assigned periodically. Students are responsible to do homework on their own. There will be several quizzes during the academic year, not necessarily announced. The quiz contains the materials covered in previous lectures, homework or to be covered that day. Any quiz or test missed without a supported documented and excused absence will represent a zero. Attendance and participation in the lecture are mandatory and will be considered in the grading. Students should bring calculators, rulers, pen and pencils to be used during the lectures.
Required Learning Materials	Data show and white board are used throughout the lectures and the lecture notes will be uploaded to the Moodle platform before the lecture day.

	Task		Weig (Mar	ght ks)	Due Week	Relevant Learning Outcome	
	Р	aper Review					
		Homework	10%	3 6	& 6		
	Assignments	Class Activity	2%				
Evaluation		Report	8%	4			
		Seminar	8%	5			
		Essay					
		Project					
	Quiz		8%	Ev	very Lecture		
	Lab.						
M Fin To	Midterm Exam		24%				
	Final Exam		40%				
	Tot	al	100%				
Specific learning	By the end of the year		the student	dent should be able to demonstrate ability to			
outcome:	explain the mathematical skills that related to the engineering inform			ring information's.			
	Know the basic science related to mathematics						
Course	1. Calculus by Thomas, 11th Edition, 2005.						
References:	2. Calculus by James Stewart, 5th Edition, 2003.						
	5. Calculus and its Applications by Marvin L. Bittinger, 10th Edition, 2011						
	4 Schaum's Outline of Calculus						
T. Senaun S Guine of Calculus							
Course topics (Theory)		Week		Learning Outcome			
Integration: indefinite in	tegrals	s, integral of	1	Ability to compute definite and indefinite			
power of trigonometric.	station	or products and		exponen	tial functions,		
The definite integral, velocity and acceleration, definite integrals of symmetric functions.		2	Solve problems in a range of mathematical applications using the integral				
Transcendental functions: natural logarithms		3	Compute	e trigonometric	inverse		

Course topics (Theory)	Week	Learning Outcome
Integration: indefinite integrals, integral of	1	Ability to compute definite and indefinite
trigonometric functions, integration of products and		integrals of algebraic, logarithmic and
power of trigonometric.		exponential functions,
The definite integral, velocity and acceleration,	2	Solve problems in a range of mathematical
definite integrals of symmetric functions.		applications using the integral
Transcendental functions: natural logarithms,	3	Compute trigonometric, inverse
properties of logarithms, logarithmic differentiation.		trigonometric, exponential, logarithmic, and
		logarithmic differentiation
The exponential function, laws of exponents,	4	Compute exponential functions
derivative and integral of exponential function.		
a^x and $\log_a x$, derivative and integral of a^x and	5	Students will be able to graph different
$\log_a x$, inverse trigonometric functions, derivative		functions including exponential functions and
and integral of inverse trigonometric functions.		log.
Hyperbolic functions, derivative and integral of	6	At the end of this week, students will be able
hyperbolic functions, inverse hyperbolic functions,		to use right triangles to evaluate the six
derivative and integral of inverse hyperbolic		Hyperbolic functions. Students also will be
functions.		able to know and draw the graphs of the six
		Hyperbolic functions and their variations.

Practical Topics	Week	Learning Outcome
Properties of determinants, Cramer's rule,	12	Solving equation using Cramer's rule
Determinants: determinant, first order, second order, third order, minor and cofactors	11	Compute determinant
Area of surface of revolution, Volume	10	Solve problems in a range of mathematical applications using the integral.
Application of definite integrals: area under a curve, area between two curves, Length of a curve in plane	9	Solve problems in a range of mathematical applications using the integral.
Techniques of integration.	8	Students will be able to find integral for different functions
Techniques of integration.	7	Students will be able to find integral for different functions

Questions Example Design:

Q1/ Use logarithmic differentiation to find the derivative of y with respect to the given independent variable: (30 marks)

a)
$$y = \frac{\theta \sin \theta}{\sqrt{\sec \theta}}$$

b) $y = \frac{x(1-x^2)^2}{(1+x^2)^{1/2}}$
c) $y = \sqrt[3]{\frac{x(x-2)}{x^2+1}}$

Q2/ Find the derivative of the following functions:

a) $y = \log_3\left[\left(\frac{x+1}{x-1}\right)^{\ln 3}\right]$ **b**) $y = ln(cot^{-1}e^t)$ c) $y = (1 - t) \sinh^{-1} \sqrt{t}$ *d*) $y = 5^{\sin\theta} \ln 5$ e) y = ln(lnx)

Q3/ Evaluate the following integrals:

a)
$$\int \frac{dx}{9x^2 - 6x + 5}$$

b) $\int_{10}^{20} \frac{dx}{x^2 \sqrt{x^2 - 16}}$
c) $\int_{1}^{4} \sec^{-1} \sqrt{x} \, dx$

Directorate of Quality Assurance and Accreditation

(35 marks)

(35 marks)

بەر يو دبەر ايەتى دڭنيايى جۆرى و متمانەبەخشىن

 $d) \quad \int \sin(\ln x) \, dx$

e) $\int \csc^3 x \, dx$

Extra notes:

External Evaluator

This module catalogue is well organised, covered a wide range of assignment methods which makes it sufficient for students' understanding and knowledge.

1- The course objective is quite clear. It meets the standard requirement for engineering competences by international mechanical engineering organisations; for example, Institute of Mechanical Engineers (IMechE) -the UK.

2- The references are up to dated references.

3- All course topics included in this catalogue is essential for further understanding of Mechanical Engineering and practise them during engineering projects.

Hereby, I confirm that this module catalogue is extremely useful and sufficient in terms of scope and quality for the first-year students in the Department of Mechanical and Energy Engineering at Erbil Polytechnic University.

Dr. Zhwan Dilshad Ibrahim 11/10/2022