Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

3

Module (Course Syllabus) Catalogue 2022-2023

Course Book

Course Description	The course is a continuation of Mathematics I which was covered in the first year. It will cover several topics including polar and space coordinates, vectors, curvatures, equations of lines and planes, functions, partial derivatives, differentiation, integration, series, and complex numbers. The course only includes theoretical hours, but assignments and unannounced assessments are also included.			
Course objectives	To prepare students for the core engineering courses such as strength of material, engineering mathematics, structural engineering, and design courses			
Student's obligation	The students are required to attend in-person classes and should not be absent more than the allowable limit. Weekly or bi-weekly homework assignments, quizzes and exams.			
Required Learning	Notebook, Textbook is optional			
Evaluation	Task	Weight (Marks)	Due Week	Relevant Learning Outcome
	Paper Review			
	Homework	10\%	3,6, 8	1,2,3
	\checkmark Class Activity	2\%	All	1,2,3
	Report	8\%	9	1,2,3,4
	E Seminar	8\%	10	1,2,3,4
	$\stackrel{\rightharpoonup}{6}$ Essay	NA		
	Project	NA		
	Quiz	8\%		1,2
	Lab.	NA		
	Midterm Exam	24\%	6	1,2
	Final Exam	40\%	12	1,2
	Total	100\%		

Questions Example Design

Q1/ Find Second-Order Partial Derivatives $\frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial y \partial x}, \frac{\partial^{2} f}{\partial y^{2}}$ and $\frac{\partial^{2} f}{\partial x \partial y}$ If $f(x, y)=x \cos y+y e^{x}$.

Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x \cos y+y e^{x}\right)=\cos y+y e^{x} \\
& \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x \cos y+y e^{x}\right)=-x \sin y+e^{x}
\end{aligned}
$$

So

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=y e^{x} \\
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}\left(\cos y+y e^{x}\right)=-\sin y+e^{x} \\
\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}\left(-x \sin y+e^{x}\right)=-x \cos y \\
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}\left(-x \sin y+e^{x}\right)=-\sin y+e^{x} .
\end{gathered}
$$

$\mathrm{Q} 2 /$ If $\mathrm{a}=\langle 4,0,3\rangle$ and $\mathrm{b}=\langle-2,1,5\rangle$.

Find $|\mathbf{a}|$ and the vectors $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b}, \mathbf{3} \mathbf{b}$, and $\mathbf{2 a}+\mathbf{5} \mathbf{b}$.

Solution:

$$
\begin{aligned}
& |a|=\sqrt{4^{2}+0^{2}+3^{2}}=\sqrt{25}=5 \\
& a+b=\langle 4,0,3\rangle+\langle-2,1,5\rangle \\
& =\langle 4-2,0+1,3+5\rangle=\langle 2,1,8\rangle \\
& a-b=\langle 4,0,3\rangle-\langle-2,1,5\rangle \\
& =\langle 4-(-2), 0-1,3-5\rangle=\langle 6,-1,-2\rangle \\
& 3 b=3\langle-2,1,5\rangle=\langle 3(-2), 3(1), 3(5)\rangle=\langle-6,3,15\rangle \\
& 2 a+5 b=2(4,0,3\rangle+5\langle-2,1,5\rangle \\
& =\langle 8,0,6\rangle+\langle-10,5,25\rangle=\langle-2,5,31\rangle
\end{aligned}
$$

Extra notes:

External Evaluator

As a lecturer I have reviewed the Course Book related to the subject of Mathematic II for second year, Department of Civil Engineering, College of Technology, I found that the course Book is very good describing the aim and objectives of the subject. Moreover, it is covering all the required syllabus and contents of the course and describes satisfactorily the aspects related to the course.

Dr. Bahman Omar Taha
Ph.D. in Structural Engineering.

