
Directorate of Quality Assurance and Accreditation خشینبهتی دڵنیایی جۆری و متمانه رایهبهڕێوهبه

Module (Course Syllabus) Catalogue

2023-2024

College/ Institute Technical Engineering

Department Information System Engineering

Module Name Object oriented Design

Module Code OOD204

Degree Technical Diploma Bachler
High Diploma Master PhD

Semester second

Qualification Phd computer science,complex and
networks

Scientific Title Lecturer

ECTS (Credits)

Module type Prerequisite Core Assist.

Weekly hours

Weekly hours (Theory) (3)hr Class ()Total hrs Workload

Weekly hours (Practical) ()hr Class ()Total hrs Workload

Number of Weeks 15

Lecturer (Theory) Dr bzar khidir hussan

E-Mail & Mobile NO. Bzar.hussan@epu.edu.iq 07504648672

Lecturer (Practical)

E-Mail & Mobile NO.
Websites

 X

 X

Kurdistan Region Government

Ministry of Higher Education

and Scientific Research

Erbil Polytechnic University

mailto:Bzar.hussan@epu.edu.iq

Directorate of Quality Assurance and Accreditation خشینبهتی دڵنیایی جۆری و متمانه رایهبهڕێوهبه

Course Book

Course Description

Object-Oriented Design is a software development approach to design and

implement software system as a collection of interacting stateful objects with

specified structure and behavior and is a course that presents an introduction to

the design and construction of software systems using techniques that view a

system as a set of objects that work together to realize the system's functionality.

This course introduces students to the principles and practices of object-oriented

design (OOD). Students will learn the fundamental concepts of OOD and apply

them to design and implement software systems.

Course objectives

1. Object-oriented methodology is widely accepted as the best methodology

for tackling a wide range of software design problems. From its early

days, reusability has been one of its most important promises of this

methodology.

2. Understanding OOP Principles:

• Define and explain the core principles of object-oriented programming

(OOP), including encapsulation, inheritance, and polymorphism.

• Apply the principles to design and implement software solutions.

3. Class and Object Concepts:

• Differentiate between classes and objects.

• Create and manipulate classes and objects in a programming language

(e.g., Java,).

4. Encapsulation:

• Define encapsulation and understand its role in data hiding and

abstraction.

• Implement encapsulation in classes and explain its benefits.

5. Inheritance:

• Understand the concept of inheritance and its role in code reuse.

• Implement and use inheritance in designing class hierarchies.

6. Polymorphism:

• Define polymorphism and understand how it contributes to flexibility

in software design.

• Implement polymorphic behavior through method overloading and

overriding.

7. Design Patterns:

• Introduce common design patterns (e.g., Singleton, Factory, Observer)

and their applications.

• Apply design patterns to solve specific design problems.

8. UML Diagrams:

• Introduce Unified Modeling Language (UML) as a tool for visualizing

and documenting OOD.

• Create and interpret UML diagrams, including class diagrams, object

diagrams, and sequence diagrams.

9. Software Architecture:

• Discuss the relationship between OOD and software architecture.

• Design and analyze the architecture of software systems using OOD

principles.

Directorate of Quality Assurance and Accreditation خشینبهتی دڵنیایی جۆری و متمانه رایهبهڕێوهبه

10. Testing and Debugging:

• Emphasize the importance of testing in object-oriented development.

• Develop strategies for testing and debugging object-oriented code

Student's obligation

1. Active Participation:

• Actively engage in class discussions, ask questions, and contribute to

group activities.

• Participate in hands-on coding exercises and design projects.

2. Preparation and Readiness:

• Come to class well-prepared by completing assigned readings and

reviewing relevant materials.

• Be ready to discuss and apply theoretical concepts in practical

scenarios.

3. Independent Learning:

• Take the initiative to explore additional resources to deepen

understanding.

• Practice coding independently to reinforce concepts covered in class.

4. Critical Thinking:

• Apply critical thinking skills to analyze and solve design problems.

• Challenge assumptions and explore alternative solutions

5. Utilization of Resources:

• Make effective use of available resources, including textbooks, online

materials, and software tools.

6. Attendance and Punctuality:

• Attend all classes and arrive on time.

• Notify instructors in advance if unable to attend a class.

Required Learning
Materials

➢ Lecture halls with computers, data show equipment for lecture

presentations and whiteboard.

Evaluation

 Task Weight

(Marks)

Due

Week

Relevant Learning Outcome

Paper Review

A
ssig

n
m

en
ts

Homework
Class Activity

Report 5

Seminar 10

Essay
Project

Quiz 15
Midterm Exam 20

Directorate of Quality Assurance and Accreditation خشینبهتی دڵنیایی جۆری و متمانه رایهبهڕێوهبه

Final Exam 50
Total 100

Specific learning
outcome:

• Students will learn to understand the use of the Java language for developing

applications.

• Strategies and Actions used to produce the outcome:

▪ Review of the basic concepts of the Java language

▪ Review of advanced concepts of the Java language

• Students will learn to understand how to design object-oriented applications,

▪ Strategies and Actions used to produce the outcome:

▪ Study of the object-oriented techniques for programming applications

▪ Study of the object-oriented characteristics of the Java Programming

language

• Students will learn to be able to implement object-oriented designs using

Java.

▪ Strategies and Actions used to produce the outcome:

▪ Study of implementation techniques using Java

▪ Study of the Java API for implementing programs

• Students will use the Unified Modeling Language (UML) for modeling the

applications.

▪ Strategies and Actions used to produce the outcome:

▪ Study of the UML diagrams in general, Class diagrams, Sequence

diagrams, Collaboration diagrams
.

Course
References:

1. David J. Barnes and Michael Kölling, Objects First With Java, A Practical
Introduction Using BlueJ, Third Edition

2. Martin Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling.

3. Barry Holms, Daniel T. Jouse-Object oriented programming
4. Nell Dale, Chip Weems-Programming and problem solving with Java
5. https://www.javatpoint.com/java-oops-concepts

6. Head First Design Patterns" by Eric Freeman, Elisabeth Robson, Bert

Bates, Kathy Sierra.

7. "Clean Code: A Handbook of Agile Software Craftsmanship" by

Robert C. Martin

8. Design Patterns: Elements of Reusable Object-Oriented Software" by

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

Course topics (Theory) Week Learning Outcome

Introduction to OOP

➢ Overview of Object-Oriented Programming (OOP)

➢ Variable, Data Types in Java

➢ Initializing objects in Java

➢ Constructors: Types of constructors

1 Ability to organize code into modular

units called classes and objects.

Understanding the role of

constructors in initializing objects

when they are created. Awareness of

default constructors and their

automatic invocation when an object

https://www.javatpoint.com/java-oops-concepts

Directorate of Quality Assurance and Accreditation خشینبهتی دڵنیایی جۆری و متمانه رایهبهڕێوهبه

➢ Constructor Overloading.

➢ Usage of Java this keyword

is created. Ability to define

constructors that accept parameters

during object creation. Mastery of

constructor overloading, where a

class can have multiple constructors

with different parameter lists.

Object Model:
➢ Encapsulation, Inheritance, and Polymorphism

➢ Abstraction and Modularity

➢ Interface.

➢ Static Binding variables, instance variables, static

method, overloading methods.

➢ Dynamic binding

2-3 Understanding of encapsulation

principles, where the internal details

of an object are hidden from the

outside world. Proficiency in using

inheritance to create a hierarchy of

classes with shared properties and

behaviors. Mastery of polymorphic

concepts, allowing objects to take on

multiple forms through method

overriding and interfaces

Introduction to UML

➢ Static Modeling: Class diagrams, Object Diagram

➢ Dynamic Modeling: Interaction, Activity, Sequence

Diagram

➢ Modeling relationships and associations

➢ Functional Model - DFD, Constraints, Relation of

Functional to Object and Dynamic

4-5 UML provides a standardized way to

visually represent the structure and

behavior of a system.

UML enables the creation of models

that capture different aspects of a

system, including its structure,

behavior, and interactions.

Use case diagrams illustrate the

interactions between system

components and external entities,

representing the functional

requirements of a system.

Class diagrams depict the static

structure of a system, including

classes, their attributes, and

relationships

Graphical User Interface (GUI)

➢ Introduction to GUI Programming

➢ Event-driven programming, Principles of GUI Design,

GUI Programming Issues, Parts of a GUI Program.

➢ Building a GUI

➢ Using a GUI Component Components and Events

6-7 The GUI should be intuitive, allowing

users to easily understand and

navigate the application.

GUI design aims to provide a user-

friendly interaction that aligns with

users' expectations and mental

models.

Maintain consistency in design

elements, such as colors, fonts, and

layout, across the entire application.

Ensure that the GUI is responsive and

adapts to different screen sizes and

resolutions

Design Principles:

➢ SOLID principles (Single Responsibility,

Open/Closed, Liskov Substitution, Interface

Segregation, Dependency Inversion)

➢ DRY (Don't Repeat Yourself) and KISS (Keep It

Simple, Stupid) principles

➢ Design by Contract

8 (SRP): Each class should have only

one reason to change.

 (OCP): Software entities (classes,

modules, functions) should be open

for extension but closed for

modification.

 (LSP): Subtypes must be

substitutable for their base types

Directorate of Quality Assurance and Accreditation خشینبهتی دڵنیایی جۆری و متمانه رایهبهڕێوهبه

 without altering the correctness of

the program.

 (ISP): Clients should not be forced to

depend on interfaces they do not

use.

 (DIP): High-level modules should not

depend on low-level modules, but

both should depend on abstractions.

Design Patterns :

➢ Introduction to design patterns

➢ Creational patterns (e.g., Singleton, Factory, Builder)

➢ Structural patterns (e.g., Adapter, Decorator,

Composite)

➢ Behavioural patterns (e.g., Observer, Strategy,

Command)

9 Reusable solutions to common

design problems that help guide the

overall architecture of the system.

Benefits: Encourages best practices,

provides a common vocabulary for

developers, and accelerates the

design process

Software Architecture:

➢ Overview of software architecture

➢ Layered architecture, client-server architecture, MVC

➢ Microservices and SOA (Service-Oriented

Architecture)

10 Capability to understand and

decompose complex systems into

manageable and modular components.

Recognition and application of

common architectural styles (e.g.,

client-server, microservices) and design

patterns. Understanding of principles

for designing scalable and high-

performance systems.

Testing in OOD:

➢ Unit testing and test-driven development (TDD)

➢ Integration testing and mocking

➢ Code coverage and continuous integration

11 Design classes and modules with

testability in mind, allowing for easy

and effective unit testing.

Benefits: Improves code quality,

identifies and prevents bugs early in

the development process, and

supports continuous integration and

delivery practices.

Practical Topics Week Learning Outcome

• Short answer questions: This includes for example,

multiple choice, True/False and fill-in-the-blank type

questions.

• Code analysis questions: We will give a short segment of

code and you may be asked to identify syntax and

logical errors, generate code output, etc.

• Code Writing: Write a program/code snippets to solve a

given problem. You should be prepared to give a

complete program, including full class heading, import,

package statement, and main methods, but we may

Directorate of Quality Assurance and Accreditation خشینبهتی دڵنیایی جۆری و متمانه رایهبهڕێوهبه

also ask you to provide just a single method or a code

fragment.

 Extra notes:

External Evaluator

Shahab Wahhab Kareem

