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Abstract—Contemporary robotics primarily emphasizes 

autonomous mobile robots, and Artificial Neural Networks 

(ANNs) have demonstrated their proficiency in managing 

intricate, nonlinear systems with illusive models.   This study 

explores the progress made in third-generation neural 

networks, namely Spiking Neural Networks (SNNs), which has 

capabilities that beyond those of traditional NNs.   We introduce 

a modular mobile robot navigation controller that utilizes SNNs 

to transmit both spatial and temporal information.   The 

controller is constructed and evaluated within a simulated 

environment that accurately simulates real-life situations, 

utilizing promising Spiking Neural Networks (SNNs).   This 

study seeks to improve the autonomous robot's collision 

avoidance and navigation capabilities by implementing a three-

layered spiking neural network (SNN).   Utilizing a customized 

variant of Spike-Timing-Dependent Plasticity (STDP) to train 

inhibitory synapses enhances the network's efficiency, resulting 

in a reduced number of required training iterations.   A 

potential method for identifying synaptic connections in a 

concealed-layer SNN is introduced as an evolutionary 

methodology, which might be utilized to establish synaptic 

connectivity in the paper. 

Keywords— Spiking neural network, STDP, Evolutionary 

Algorithm. 

I. INTRODUCTION  

Navigation refers to the procedure via which mobile robots 
achieve a prearranged destination while circumventing 
specific dangers.   This strategy is implemented based on 
sensor inputs and logical inferences, particularly in situations 
characterized by unknown variables, uncertainties, and a lack 
of clear organization.   Autonomous navigation is an essential 
characteristic that mobile robots must possess in order to 
successfully carry out their duties [1].   Mobile robot 
navigation control has hitherto been limited to environments 
that possess clearly defined models.   In this manner, 
traditional navigation controllers are generally restricted to 
overseeing uncomplicated, recurring assignments, such as 
guiding robots along pre-established routes.   Constructing 
mathematical models under conditions of uncertainty and 
absence of organization is a challenging endeavor.   Hence, 
the issue of creating navigation controllers for mobile robots 
in intricate situations is a formidable undertaking.  

Due to their ability to represent and manage nonlinear 
systems, numerous controllers for mobile robots that utilize 
neural networks (NNs) have been successfully developed and 
deployed [2–15].   A notable current trend in the design of 
mobile robot controllers involves the merging of traditional 
processes with artificial neural network (ANN) methodology 
[12–15].   The incorporation of these methods signifies the 
beginning of a new age in enhancing the capabilities of 
navigation controllers, offering a more adaptable and reliable 
option for mobile robots operating in difficult conditions.   
Multiple studies have demonstrated that neurons in the brains 
of animals communicate with each other through spikes, 
which are brief electrical pulses.   Spiking neural networks 
(SNNs) are a distinct type of neural network that originated 
from spike sequences and possess the ability to encode both 
spatial and temporal information.   Spike coding in spiking 
neural networks (SNNs) allows for the transmission of 
spatiotemporal information, closely mimicking the activity of 
actual biological neurons. This sets SNNs apart from 
conventional models.   Spike neurons in SNNs offer more 
precise representations of real neurons and enhance the speed 
of processing and communication.  
According to several experts, artificial neural networks 
(ANNs) have progressed through three clearly defined 
generations.   The second generation employed continuous 
activation functions to compute output signals, whereas the 
first generation utilized McCulloch-Pitts threshold neurons.   
The latest release is the third iteration, which incorporates 
spike neural networks (SNNs) [16].   Spike Neural Networks 
(SNNs) are more computationally potent than conventional 
neural networks (NNs) due to their utilization of specific 
spike timings to transmit data.   SNNs have the ability to 
imitate any feedforward sigmoidal neural network and can 
approximate any continuous function [17].   Spike-based 
neural networks (SNNs) possess a significant edge over other 
forms of neural networks in terms of their ability to withstand 
and process noisy data.   Moreover, the utilization of spike-
based digital circuit modeling enables the implementation of 
spiking neural networks (SNNs) in a tangible form.   SNNs 
possess significant processing capacity and have exceptional 
capabilities in pattern recognition and classification [18–29].  
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Natschläer and Ruf [18] propose a medically appropriate 
approach for identifying clusters in high-dimensional input 
fields using SNNs.   Furthermore, this strategy is particularly 
useful in ever-changing situations.   At a basic level, SNNs 
are accurate models that closely resemble biological systems, 
and they are also robust and flexible tools for various 
applications, especially in the fields of pattern recognition 
and hardware implementation.   The captivating 
characteristics of Spiking Neural Networks (SNNs) have 
garnered considerable interest, resulting in ongoing 
investigation and the emergence of novel findings.   The 
Spike Response Model (SRM), Probabilistic Spiking Neuron 
Model (PSNM), Leaky Integrated-and-Fire (LIF) Neuron 
Model, and Dynamic Firing Threshold Model are among the 
various models of spiking neurons that have been created.   
Although the LIF model is widely recognized and commonly 
employed for simulating SNNs, the PSNM model presents a 
unique spiking neuron model that distinguishes itself due to 
its exceptional resilience.   Significant computational models 
have been introduced in the field, including the Liquid State 
Machine (LSM) and evolving support vector networks 
(SNNs), the Neurogenetic Brain Cube (NeuCube), and the 
Spike Pattern Association Neuron (SPAN) Architecture.   
NeuCube is a dynamic spiking model designed to mimic 
brain data [26], while SPAN excels at learning the 
relationships between input and output spike patterns and 
generating desired spike trains.  
The SNN training algorithms can be broadly classified into 
two categories: supervised and unsupervised.   Several 
unsupervised spike-based learning techniques encompass 
long-term potentiation (LTP) and long-term depression 
(LTD) [50], spike-based Hebbian learning, and spike-based 
deep learning (STDP).   Supervised spike-based approaches 
encompass several methods such as statistical learning 
techniques, SpikeProp, evolutionary strategies, linear algebra 
techniques, ReSuMe, the SPAN method, and others.   SNNs 
have proven to be effective, especially in robotics tasks 
including path planning, environment sensing, and robot 
behavior controllers [30].   Robots functioning in complex 
and unpredictable surroundings are more compatible with 
Spiking Neural Networks (SNNs) compared to conventional 
Artificial Neural Networks (ANNs) due to SNNs' natural 
capacity to transmit both spatial and temporal data.   Prof. 
Floreano's laboratory has successfully enhanced the structure 
and parameters of Spiking Neural Network (SNN) in robot 
controllers by the utilization of genetic algorithms. This 
research has demonstrated the robustness and adaptability of 
SNNs.  
The iSpike C++ library, developed by Gamez et al., enables 
efficient communication between the iCub humanoid robot 
and models of spiking neural networks. This achievement is 
a notable outcome of recent research.   Thanks to a novel 
learning rule presented by Andre and colleagues, self-
organizing neural networks (SNNs) can now function as 
controllers for robot simulations, resembling the functionality 
of the human brain. This learning rule is based on Spike-
Timing-Dependent Plasticity (STDP).   Luque et al. present a 
spiking neural network (SNN) that mimics the structure of the 
cerebellum. This SNN is designed to have improved 
resistance to noise and is capable of maintaining corrective 
models. It enables accurate control of a robot arm with non-
stiff joints.   Alnajjar et al. created a hierarchical adaptive 

controller based on SNN to assist a physical mobile robot in 
efficiently navigating dynamic settings.   Paolo et al. 
demonstrate the versatility and use of Spiking Neural 
Networks (SNNs) in various robotic contexts by employing a 
three-layered SNN with Spike-Timing-Dependent Plasticity 
(STDP) learning rules as a controller for robot target-
approaching.  
This publication presents our contribution to the study: a 
target-approaching controller that employs behavior-based 
techniques and incorporates Spiking Neural Networks 
(SNNs).   The three-sub-controller modular navigation 
controller offers a complete and adaptable solution for robot 
navigation in challenging scenarios.   It relies on previous 
principles of wall-tracking and obstacle-evading controllers.  
The LIF model, or leaky integrate-and-fire neuron model, 
computes the cumulative value of postsynaptic potentials and 
initiates the generation of action potentials when the 
membrane potential surpasses a specific threshold.   The 
decline of the cell membrane potential in the absence of input 
is represented as a leak process [31].   The LIF model 
effectively stores data by considering the numerical and 
temporal characteristics of brain action potentials, regardless 
of their specific waveform.   This method streamlines the 
explanation of action potentials in biological neurons by 
breaking them down into distinct occurrences that happen at 
certain time intervals before delving into a comprehensive 
model of their structure.   The relationship between the 
injected current, I(t), and the membrane potential, u(t), is 
governed by a linear differential equation, which is based on 
fundamental concepts from electrical theory.   In order to 
mimic the structure of a cell membrane, we have connected 
capacitor C and resistor R in a parallel configuration.   In the 
absence of external stimulation, the membrane potential 
returns to its disrupted baseline state.   Hence, the linear 
differential equation governs the response of the membrane 
potential to the input current I(t).  
 
In section 2 of the study provides an overview of fundamental 
concepts and approaches, including STDP, the Leaky 
Integrate-and-Fire Neuron Model, and Spiking Neural 
Networks.   This section also includes information about the 
sensors used by the robot, as well as its kinematics and 
dynamics.   Section 3 centers on the simulated robot and 
encompasses the examination procedures, instructional 
process, and use of spike-based neural networks.   Section 4 
presents a concise summary of the study's main discoveries 
and their consequences.   This study not only establishes the 
foundation for future research, but also presents a thorough 
framework for examining and advancing the subject. It 
outlines potential methods for improving the current model 
and addresses its practical implications [34-40]. 

II. THEORY AND TECHNIQUES  

  The complex patterns found in actual neural networks have 
served as a source of inspiration for the creation of artificial 
neural networks (ANNs), which are a specific sort of 
computer system.   Artificial neurons, which are 
interconnected computer units, serve as the fundamental 
components of these systems. They possess the ability to 
learn and execute certain tasks.   Modifying the 
interconnections among artificial neural networks enables 
them to adjust and enhance their performance.   The 
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Threshold Logic Unit, commonly referred to as a threshold 
gate, is a prevalent and fundamental paradigm of artificial 
neural networks.   The architecture of these neural networks 
transforms continuous inputs into discrete outputs.   It 
achieves this by aggregating all the weighted inputs and 
comparing the total to a pre-established threshold, as depicted 
in Figure 1.   We propose a modification to the neuron model 
that enables the conversion of real-valued inputs to real-
valued outputs.   Instead of doing a comparison between the 
weighted sum of the inputs and a threshold, an activation 
function is employed.   The sigmoid function is a frequently 
used activation function for this type of task. 
 

 
Figure 1: Threshold Logic Unit Model and Feedforward Neural Network 
Structure 

In this analysis, we explore two key components of 
constructing neural networks, employing a comprehensive 
diagram.   The Threshold Logic Unit neuron model, denoted 
as (A), compares the sum of the weighted inputs to the 

threshold value ✓.   In accordance with the binary output 

principle, neurons in this model will transmit a signal of 1 if 
the weighted sum exceeds the threshold, and a signal of 0 
otherwise.   The diagram illustrates the standard structure of 
a feedforward neural network.   This network architecture 
consists of three input neurons, two output neurons, and a 
hidden layer with five neurons.   In a feedforward network, 
the input neurons are responsible for receiving data, which 
subsequently propagates through the hidden layer and 
ultimately reaches the output neurons.   Collectively, these 
elements represent the fundamental principles of neural 
network architecture. 

A. Spiking Neural Networks 

From a biological perspective, spiking neural networks 
(SNNs) vary from networks that employ real-valued neurons 
in that they assume the output of the activation function 
represents the present firing rate of a biological neuron.   
Nevertheless, studies suggest that the possibility of data loss 
exists when solely taking into account firing rates, without 
addressing precise firing timings [32].   Research indicates 
that some tasks and computations can be completed within a 
timeframe of 20-30 milliseconds by organic brain networks, 
even when the neurons' firing frequency is below 100 Hz.   
More precisely, if only the firing rate is taken into account, 
the minimum sample time would be 20 to 30 milliseconds.   
The calculations themselves would require more time.   The 
computational time needed by artificial neural networks 
would therefore exceed that of comparable biological neural 
networks. 

  
Figure 2: Izhikevich model-based spike creation [18]. 

 

B. The Leaky Integrate-and-Fire Neuron Model 

The LIF neuron model serves as the foundation for 
comprehending the dynamics of neural networks.   The 
membrane potential must attain a particular threshold for 
proper functioning, at which juncture the postsynaptic 
potentials are aggregated to initiate action potentials.   The 
model additionally integrates a leak mechanism [7] to 
guarantee a progressive reduction in the cell membrane 
potential in the absence of input.   The LIF model compresses 
neural action potentials into discrete temporal events, 
emphasizing the significance of timing and frequency as 
information carriers, instead of attempting to replicate the 
complex forms observed in real neurons.   The model utilizes 
a linear differential equation to represent the variation of the 
membrane potential, which is symbolized as u(t).   The cell 
membrane can be represented as a parallel combination of a 
resistor R and a capacitor C, using principles from electrical 
theory. This representation helps to understand the 
relationship between the injected current I(t) and the 
membrane potential.   Without any input, the membrane 
potential remains at its resting value, denoted as (u)rest.   This 
implies that the equation accurately represents the 
relationship between the membrane potential and the input 
current I(t). 
The linear differential equation governing the Leaky 
Integrate-and-Fire (LIF) neuron model is expressed as 
follows: 

��(�)
�� = 1 + + �(�)	�
���


� + �(�)
�                                     (1) 

The Leaky Integrate-and-Fire (LIF) neuron model is 
characterized by a linear differential equation governing the 
evolution of its membrane potential over time, denoted as 
(u(t)). This mathematical expression incorporates essential 
components reflecting the physiological behavior of 
biological neurons. The equation includes terms that account 
for the leaky nature of the neuron, represented by (u(t)-
urest)/RC, where (u_rest) signifies the resting potential and 
(RC) involves the resistance and capacitance of the cell 
membrane. The second term, (I(t))/C, encapsulates the 
impact of the injected current (I(t)) on the membrane 
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potential. The LIF model simplifies the intricate dynamics of 
biological neurons, emphasizing the timing and frequency of 
action potentials rather than the exact shape, allowing for a 
more computationally efficient representation in neural 
network simulations. 

C. Spike-Timing-Dependent Plasticity 

Spike-timing-dependent plasticity (STDP) is a vital 
mechanism of neuroplasticity that enables neurons to 
establish synaptic connections by considering the precise 
timing of their firing sequences.   The short synaptic distance 
protocol (STDP) is based on the premise that synaptic 
connections are weakened when the firing of the postsynaptic 
neuron occurs in the opposite direction of the presynaptic 
neuron.   By employing this rule that is contingent on time, 
neurons are able to establish connections between inputs that 
occur within a precise temporal framework in a manner that 
is causally linked.   STDP, despite being widely recognized 
as a crucial element of memory and learning, fails to explain 
the more complex learning events that involve rewards and 
punishments.   Dopamine functions as an additional 
neurotransmitter in this context, regulating changes in 
synaptic weights through an error-based reinforcement 
signal.   Dopamine is a neuromodulator that enhances long-
term depression (LTD) when it is produced in response to 
inputs that are not predictive or have negative predictions. 
Conversely, it promotes long-term potentiation (LTP) when 
it is released in response to inputs indicating rewarding events 
through spike-timing-dependent plasticity (STDP).   
Dopamine and spike-timing dependent plasticity (STDP) 
collaborate to generate an asymmetrical STDP window, 
which improves reward prediction.   This complex approach 
offers a thorough comprehension of synaptic plasticity in 
relation to learning and memory. 

 c� = −� τ�� + STDP(τ)δ(t − t���/�!"#       (2) 

s� = cd�   τ = t�!"# − t���                            (3) 

In the context of equations 2 and 3, several critical parameters 
come into play: 'd' represents the extracellular dopamine 
concentration, τ(c) serves as the time constant, and δ(t) 
denotes the Dirac delta function, responsible for 
incrementally adjusting the value of the variable 'c.' When the 
presynaptic neuron fires at time t-pre, followed by the 
postsynaptic neuron at time t-post, these occurrences 
instigate changes in the variable 'c.' The extent of this 
modification is determined by the magnitude of STDP(τ). 
The dynamic evolution of this change is visually represented 
in Figure 3, illustrating how 'c' responds to neuronal spiking. 
The parameter 'τ' signifies the temporal discrepancy between 
the presynaptic and postsynaptic neuron spikes. 

 
Figure 3: The cell membrane potential is unique at every presynaptic spike. 
It increases for excitatory synapses and decreases for inhibitory synapses. 
When a threshold is crossed, a spike is released. 

 

D. Kinematics and dynamics 

Assuming that the wheels of the robot roll without slipping, 
and considering the robot as a rigid body with wheels capable 
of moving only perpendicular to the wheel axis, the 
kinematics of the entire robot, including the variation of the 
direction of motion (ℑ), and the position coordinates (x and 
y) can be defined by the speeds vL and vR of the left and right 
wheels. Using w = ℑ to represent the rotation of the robot 
around the instantaneous center of rotation and v to denote 
the speed of the center-of-mass of the robot, the following 
relations are established: 

v = '()'

*                                                                   (4) 

v = '(	'

*
                                                            (5) 

E. Sensors 

1) The odometer sensor 

 
An essential component for monitoring the distance traveled 
by a robot is an odometer sensor.   Navigation, mapping, and 
localization are among the many applications for it.   Typical 
motion tracking technologies employed by odometer sensors 
encompass inertial sensors and wheel encoders, enabling the 
sensor to accurately track the robot's movements.   Ground-
based robots often utilize wheel encoders, which employ 
sensors to track the rotations or revolutions of the wheels.   
The sensor can determine the distance covered by detecting 
and tallying the rotations, based on the established wheel 
circumference.   This approach generates a dependable 
estimation of displacement, making it widely utilized in 
differential drive robotics and automotive applications. 
At the initiation of each simulation, the odometer is aligned 
with the real position of the robot. As the robot traverses its 
path, the estimated position is iteratively adjusted, 
considering both the speed and angular speed of the robot. 
This adjustment incorporates noise from a normal 
distribution N(0, p2), where o = 0.0003. Estimating the 
present position is not solely dependent on the current 
movement parameters but is also influenced by the estimated 
position in the preceding step, p=0.04. 

2) Ultrasonic sensors 

Ultrasonic sensors are commonly used in mobile robot 
navigation systems to identify impediments and measure 
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distances.   The sensors operate by tracking the duration it 
takes for high-frequency sound waves to return to the 
environment after reflecting off nearby objects.   An 
ultrasonic sensor records signals, which are then encoded and 
transmitted by support vector neurons (SNNs) to the sensory 
neurons of the network.   The sensory neurons transmit 
signals to the motor neurons, which govern the locomotion of 
the robot.   Multiple studies have demonstrated that ultrasonic 
sensors enhance the precision of mobile robot navigation by 
identifying and evading obstacles [33].   Efficient in 
controlling robotic systems.   Robots has the capacity to 
identify objects at different distances, enhancing their ability 
to navigate and evade hazards.   The field of vision of the 
sensor is determined by the angle at which it is positioned, 
resulting in data collection within either a small or wide 
range.   Precision control, facilitated by accurate distance 
measurements, enables the ability to plan paths and 
manipulate objects.   The ability to control in real-time 
enhances responsiveness and agility by facilitating rapid 
reaction times.   Ultrasonic sensors possess the ability to 
detect impediments even when they are not directly visible, 
hence minimizing the probability of collisions.   The 
availability of mounting and integration options facilitates the 
incorporation of these devices into robot systems.   Robots 
possess the capability to travel, comprehend their 
environment, and accomplish tasks when specific 
characteristics are taken into account. 

III. SIMULATED ROBOT 

A. Application of neural networks with spikes 

This study's spiking neural networks (SNNs) utilize leaky 
integrate-and-fire (LIF) neurons, as detailed in Section 2.3, 
with parameters specified in Table 1. The membrane 
resistance and time constant are incorporated into the 
synaptic weights (wij) for computational simplification of the 
membrane potential. In the LIF model, neurons emit action 
potentials in the form of Dirac ℑ functions at firing times t. 
Consequently, the term RI(t)/Tm in Equation 2.1 can be 

substituted with + ,-. ℑ(t − ti)2
345  in the equation 

governing the membrane potential for neuron j. Here, i 
denotes incoming neurons ranging from 1 to n, and wij 
represents the connecting weights. This modification 
streamlines the membrane potential equation. 
 

��6
�� = [�6(�)	8
���]

:; <= + + (-. ℑ(t − ti))2
345                     (6) 

The firing times Ti represents the instances when neuron I 
emits action potentials. Upon reaching the threshold, the 
membrane potential triggers the emission of an action 
potential, and the potential is subsequently reset to the reset 
potential ur. Synapses are represented as weights within the 
range w=[1, 1], where negative weights denote inhibitory 
synapses, and positive weights correspond to excitatory 
synapses. 
Table 1: Values for the parameters in the LIF-neuron model 

Parameter Value 

Membrane time constant, Tm 10 ms 

Rest potential, rest 0 mV 

Reset potential, ur 10 mV 

Threshold, v 1 V 

Refractory period, Tr 2 ms 

 
 

the spiking neural network model is described as using the 
pair-based STDP model to update the excitatory synapses.   
Table 2 provides the precise specifications of the STDP.   
Neurons are updated at a rate of 1000 Hz, whereas synaptic 
weights are modified at a rate of 50 Hz, synchronized with 
the robot's frequency.   This is quite intriguing.   The 
synchronization is essential since the usefulness of the 
modulatory success signal relies on the state of the robot.   
Hence, the success signal is contingent upon the state.   The 
neurons' spiking activity during the period between synaptic 
updates is accurately explained by the eligibility trace. 

 
TABLE 2: VALUES FOR THE PAIRWISE STDP MODEL 

PARAMETERS. 

Parameter Value 

Presynaptic temporal window, 

Tpre 

20 ms 

Presynaptic temporal window, 

Tpost 

20 mV 

Presynaptic weight update, A+ 0.021 

Postsynaptic weight update, A -0.022 

Reward temporal window, Tpre 201 ms 

B. Training process 

Neural networks are utilized to instruct a robot on how to 
navigate around barriers and successfully accomplish a pre-
established objective.   The training scenarios closely 
resemble the test cases, although they are not identical.   The 
stage consists of an arena measuring 6 by 6 meters, with 
intermittent square barriers measuring 1 by 1 meter.   Initially, 
the robot is oriented in any desired direction.   The destination 
place is selected at random from a variety of locales indicated 
by green stars.   The goal is for the robot to navigate towards 
the target.   The training process ends if the robot successfully 
achieves the target within a predetermined amount of time 
steps, or if it becomes immobile for a prolonged duration due 
to colliding with a wall or obstacle, indicating that it is stuck. 

 
Figure 4: The target is positioned in one of the potential locations (green 

star) during training. 

 
The training process involves updating the synaptic weights 
of the spiking neural networks using STDP, detailed in 
Section 2.4. All neurons receive the same global modulatory 
success signal throughout training, denoted as M. The value 
of M is contingent on the network's performance, assessed by 
criteria including distance to the target, angle to the target, 
and proximity to obstacles. Successful navigation to the 
target involves minimizing distance and angle while avoiding 
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collisions with obstacles. Consequently, the modulatory 
success signal M incorporates reward parameters: Rd 
(distance to the target), Ra (angle to the target), and Ro 
(distance to the nearest obstacle). The specific values of these 
parameters are tailored to the desired behavior and objectives 
of the robot. Through the adjustment of synaptic weights 
based on the modulatory success signal M, the spiking neural 
networks learn to optimize the robot's movements, ensuring 
efficient target-reaching while preventing collisions with 
obstacles. 
 

>? = @(A) = B1 − �
�C  -@ ?D > ?

0, otherwise                             (6) 

C. Testing 

Each training cycle concludes with an assessment to ascertain 
the proficiency of the networks.   Throughout this assessment, 
four predetermined test scenarios are employed to determine 
the suitability of the networks.   The test cases encompass 
scenarios in which the destination location, initial robot 
position, and direction may vary, thereby ensuring a thorough 
assessment of the networks' performance.   The trial 
outcomes demonstrate the versatility and efficacy of the 
trained networks across various environments. 

 
Figure 5: The layouts of the four test cases that determine the network's 
fitness. 
 

As a component of its training regimen, the robot undergoes 
eleven tests that are generated randomly following each 
training cycle.   We continue this process until we have 
trained the robot in 150 unique scenarios.   This operation is 
repeated nine times using the random number generator, each 
time with a different seed.   Figure 6, located on the right side, 
displays the mean number of arrivals for various seeds of the 
random number generator.   This image effectively 

demonstrates the high level of proficiency and adaptability of 
the trained robot in various settings. 

 
Figure 6. Depicts the average number of arrivals (µ) with standard deviation, 
plotted against the number of training rounds. The graph also refers to the 
average number of arrivals when the network undergoes no training, denoted 
as µ0. This visual representation offers insights into the progressive 
improvement in the robot's performance over successive training rounds, 
providing a quantitative measure of its learning and adaptation capabilities. 

As anticipated, the exact performance has a degree of 
variability due to the diverse training scenarios. However, a 
consistent observation is that, in most cases, the network 
tends to achieve peak performance after approximately 90-
110 training scenarios. Figure 7 visually represents the 
network's performance on the four test cases following 
training as outlined in Section (training) based on 150 
different scenarios. Notably, the robot demonstrates 
successful arrival at the target in all four test cases, 
highlighting the effectiveness of the training process in 
enhancing the robot's navigation capabilities. 

Figure 7. The network after training 

According to the data, it seems that training increases the 
mean number of arrivals until it reaches a plateau.   The lack 
of noticeable change in the standard deviation is very 
remarkable.   Despite undergoing training, the outcomes of 
recurrent network testing exhibit inconsistency across 
different iterations.   The network's sensitivity to performance 
changes indicates that it is still influenced by inaccurate 
location and direction predictions, implying that uncertainty 
remains a persistent issue even after training. 
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IV. CONCLUSION & FUTURE WORK 

 
   Our experiment confirmed that a three-layer spiking neural 
network trained with STDP exhibits effective behavior in 
both collision avoidance and target navigation.   The network 
attains its maximum performance after being trained on over 
100 instances, demonstrating its ability to acquire knowledge 
and improve movement optimization.   It is crucial to 
remember that the network is prone to errors in its projected 
placements and orientations, which might provide challenges 
in real-world applications.   Despite encountering collisions 
in 18% of the arena configurations, the spiking neural 
network successfully reached the objective in 82 instances.   
Further investigation is required to improve the network's 
ability to withstand collision events, and this outcome offers 
valuable insights into the network's unpredictable behavior. 

A. Future Work 

The current research represents a significant advancement in 
the application of spiking neural networks for target 
navigation and collision avoidance in autonomous robots.   
Numerous captivating paths must be investigated to advance 
this subject.   In order for the network to be effectively 
implemented in real-world scenarios, it is imperative that it 
possesses the capability to endure inaccuracies in both 
position and direction forecasts.   The primary emphasis will 
be on implementing strategies that offer adaptability in 
uncertain situations and minimize the consequences of 
mistakes.   Furthermore, the functionality of the network may 
be more comprehended by subjecting it to examinations in 
intricate real-life scenarios.   Hybrid designs have the 
potential to enhance performance by integrating spiking 
neural networks with other models.   Exploring more 
sophisticated learning mechanisms, such as reinforcement 
learning, could improve training procedures.   Future study 
should focus on prioritizing energy efficiency and conducting 
performance evaluations in dynamic settings that entail 
human-robot interaction.   Through an exploration of these 
characteristics and the improvement of current models, the 
study aims to accelerate the progress of self-governing 
robotic systems 
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