

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

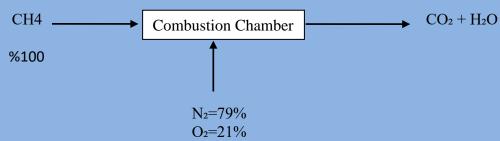
Module (Course Syllabus) Catalogue 2022-2023

College/ Institute	Koya Technical Institute				
Department	Petroleum Technology				
•	-				
Module Name	Heat Transfer				
Module Code					
Degree	Technical Diploma • Bachler				
	High Diploma Master PhD				
Semester	3 _{th}				
Qualification	PhD				
Scientific Title	Lecturer				
ECTS (Credits)					
Module type	Prerequisite Core • Assist.				
Weekly hours					
Weekly hours (Theory)	(2)hr Class ()Total hrs Workload				
Weekly hours (Practical)	(2)hr Class ()Total hrs Workload				
Number of Weeks	12				
Lecturer (Theory)	Dr. Barhm Abdullah Mohamad				
E-Mail & Mobile NO.	barhm.mohamad@epu.edu.iq 07512209152				
Lecturer (Practical)					
E-Mail & Mobile NO.					
Websites					

Course Book

	This course will focus on the Demonstrating the basic concepts of heat				
	trans	sfer and covering p	rocess related t	o heat transfe	r such as conduction,
Course Description	conv	ection and radiation	on.		
	•		_		heat transfer.
Course objectives	•	Analysing how h			
	Educating students to solve problems.				
	Attending classes and participate in the lecture.				re.
Student's obligation	•	Make reports a		fferent topics.	
	Assignment preparations.				
	 Make quizzes and exams to make sure they got necessary knowledges. 				
Required Learning	•	Handouts, notes and references.			
Materials	Showing necessary videos and reports.				
	Showing equipment on different sites if possible.				
		Task	Weight (Marks)	Due Week	Relevant Learning Outcome
	Paper Review		,		
		Homework	5		
Evaluation	Assignments	Class Activity	2		
		Report	10		
		Seminar	10		
		Essay			
		Project			
	Quiz		8		
	Lab.		15		
	Midterm Exam		10		
	Final Exam		40		
	Total		100		
Specific learning	1- Theory of heat transfer.				
	2- Analyzing problems.				
outcome:	2	2- Analyzing pro	blems.		

Course References:


- 1. Bejan, A. and Kraus, A.D. (2003) Heat and Mass Transfer Handbook. John Wiley and Sons, Hoboken.
- 2. Cengel, Y. A., & Ghajar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (5th ed.). McGraw-Hill Professional.

Course topics (Theory)	Week	Learning Outcome
Introduction	1	General information about heat transfer
Conduction, convection and radiation	2	Importance of types of heat transfer
Heat exchanger concepts	3	The selection of heat exchanger
Cooling tower	4, 5, 6 & 7	Cooling tower types
Psychrometric Chart	8	Psychrometric Chart Principle and usages
Steam boiler	9 & 10	Steam generation types and its approaches
Furnace (Heater)	11	Basics design of heater
Combustion	12	The combustion phenomena
Practical Topics	Week	Learning Outcome
Temperature Measurements and Calibration	1	Thermometer readings and calibration technique
Thermal conductivity	2	Measuring thermal conductivity of materials
Free and Forced Convection	3	Concepts of convection heat transfer
The effect of varying flow rate-parallel flow double pipe heat exchanger	4&5	Basic design of heat transfer
The effect of varying water flow rate on the performance of mechanical draught cooling tower	6	The approaches of mechanical draught cooling tower

Questions Example Design

Ex. 1: Calculate the equivalence ratio for the following system, if you know the A/F Actual = 12: 1:

Solution:

Let complete combustion:

CH4 +
$$2O_2$$
 + $3.76N_2$ — CO₂ + $2 H_2O$ + $3.76N_2$

A/F Stoic. =
$$\frac{\text{M.weight[air]}}{\text{M.weight[fuel]}}$$

$$= \frac{10.58}{12} = 0.88 \text{A/F Stoic.} = \frac{[2 \times 32] + [3.76 \times 28]}{[16]} = 10.58$$

Equivalence Ratio [
$$\theta$$
] = $\frac{A/F \text{ stoic.}}{A/F \text{ actual}}$

 θ <1 The mixture is lean.

Ex. 2: 20 kg of (C_3H_8) fuel burned with 400kg of air to product CO_2 and H_2O , what is the equivalence ratio for the following system, if you know the A/F Actual = 11 : 1 ?

Solution:

$$C_3H_8 + 5O_2 + 3.76 N_2$$
 \longrightarrow $3CO_2 + 4H_2O + 3.76 N_2$

Basis: 20 kg of C_3H_8 and 400kg of air $[O_2, N_2]$

A/F Stoic. =
$$\frac{\text{M.weight[air]}}{\text{M.weight[fuel]}}$$

$$\frac{A}{F}Stoic. = \frac{\frac{400}{160} + \frac{400}{105.28}}{\frac{20}{44}} = 13.85$$

Equivalence Ratio [
$$\theta$$
] = $\frac{A/F \text{ stoic.}}{A/F \text{ actual}} = \frac{13.85}{11} = 1.25$

 θ > 1 The mixture is rich.

Extra notes:	
2110100 1100000	
External Explication	
External Evaluator	