

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2023-2024

College/ Institute	Erbil Technology College			
Department	Automotive Technology			
Module Name	Theory of engine design			
Module Code				
Degree	Technical Diploma Bachelor			
	High Diploma Master PhD			
Semester	8 _{th}			
Qualification	PhD			
Scientific Title	Lecturer			
ECTS (Credits)				
Module type	Prerequisite Core Assist.			
Weekly hours				
Weekly hours (Theory)	(3)hr Class ()Total hrs Workload			
Weekly hours (Practical)	(0)hr Class ()Total hrs Workload			
Number of Weeks	12			
Lecturer (Theory)	Dr. Barhm Abdullah Mohamad			
E-Mail & Mobile NO.	barhm.mohamad@epu.edu.iq 07512209152			
Lecturer (Practical)				
E-Mail & Mobile NO.				
Websites				

Course Book

Course Description	This course will emphasize the illustration of fundamental concepts in engine design, exploring its multidisciplinary nature, which encompasses subjects like thermodynamics, mechanics, materials science, and control systems, among other areas. Progress in these domains plays a pivotal role in fostering the evolution of engines that are not only more efficient and powerful but also environmentally friendly.				
Course objectives	 Providing knowledge about Understanding and manipulating the thermodynamic processes within the engine to maximize efficiency and power output. Analysing how Selecting and designing engine components with materials that balance strength, weight, and heat resistance. Educating students to solve problems. 				
Student's obligation	 Attending classes and participate in the lecture. Make reports and studies on different topics. Assignment preparations. Make quizzes and exams to make sure they got necessary knowledges. 				
Required Learning Materials	 Handouts, notes and references. Showing necessary videos and reports. Showing equipment on different sites if possible. 				
		Task	Weight (Marks)	Due Week	Relevant Learning Outcome
	P	aper Review			
		Homework	5		
	Ass	Class Activity	2		
	igi	Report	10		
			10		
T 1 (*	ımer	Seminar	10		
Evaluation	signments	Seminar Essay			
Evaluation		Seminar Essay Project	10		
Evaluation	Qui	Seminar Essay Project	10		
Evaluation	Qui Lab	Seminar Essay Project z	10 8 15		
Evaluation	Qui Lab Mid	Seminar Essay Project z term Exam	10 8 15 10		
Evaluation	Qui Lab Mid	Seminar Essay Project z term Exam	10 8 15		

Specific learning outcome:	 Theory of engine design. Analyzing problems. Solving selection and design problems.
Course References: 3.	V. Ganesan, "IC Engines Fourth Edition Handbook," Tata McGraw Hill Education Private Limited, 2003. S. Amroune, A. Belaadi, N. Menasri, M. Zaoui, B. Mohamad, H. Amin, "New approach for computer-aided static balancing of turbines rotors," Diagnostyka, vol. 20, no. 4, 2019, DOI: 10.29354/diag/114621. Б Мохамед, Я Кароли, АА Зеленцов, Трехмерное моделирование течения газа во впускной системе автомобиля «Формулы Студент» Журнал Сибирского федерального университета, 13(5), pp. 597-610, 2020. DOI: 10.17516/1999-494X-0249. B. Mohamad, J. Karoly, A. Zelentsov, "CFD modelling of formula student car intake system," Facta Universitatis, Series: Mechanical Engineering, vol. 18, no. 1, pp. 153-163, 2020, DOI: 10.22190/FUME190509032M.

Course topics (Theory)	Week	Learning Outcome	
Introduction	1	General information about engines and their parameters	
Engine cycles	2	Importance of types of engine cycles	
Functional Requirements of an Injection System	3	The selection of heat exchanger	
Quality of engine Fuels	4	Engine fuel types	
The Phenomenon of Knock in CI Engines	5	Engine knocking and their causes	
Direct Frictional Losses	6	Losse types and its approaches	
Engine Power	7	The influence of engine power parameters	
Combustion	8	The combustion processes	
Engine Performance Characteristics	9	Importance of Engine Performance Characteristics	

		Outcome
Practical Topics	Week	Learning
AVL Engine design software	12	Basics of engine design software
		thermodynamic analysis
Heat Balance	11	The basics of
		optimization technique
Methods of Improving Engine Performance	10	The importance of

Questions Example Design

4.1 An eight-cylinder, four-stroke engine of 9 cm bore and 8 cm stroke with a compression ratio of 7 is tested at 4500 rpm on a dynamometer which has 54 cm arm. During a 10 minutes test the dynamometer scale beam reading was 42 kg and the engine consumed 4.4 kg of gasoline having a calorific value of 44000 kJ/kg. Air 27 °C and 1 bar was supplied to the carburettor at the rate of 6 kg/min. Find (i) the brake power delivered (ii) the brake mean effective pressure (iii) the brake specific fuel consumption (iv) the brake specific air consumption (v) the brake thermal efficiency (vi) the volumetric efficiency and (vii) the air-fuel ratio.

$$bp = \frac{2\pi NT}{60000}$$

$$= \frac{2 \times \pi \times 4500 \times 42 \times 0.54 \times 9.81}{60000} = 104.8 \text{ kW}$$

$$bmep \qquad = \qquad \frac{bp \times 60000}{LAnK} = \frac{104.8 \times 60000}{0.08 \times \frac{\pi}{4} \times 0.09^2 \times \frac{4500}{2} \times 8}$$

$$= 6.87 \times 10^5 \text{ Pa} = 6.87 \text{ bar}$$

$$bsfc = \frac{\frac{4.4}{10} \times 60}{104.8} = \mathbf{0.252 \ kg/kW \ h}$$

$$bsac = \frac{6 \times 60}{104.8} = 3.435 \text{ kg/kW h}$$

$$\eta_{bth} = \frac{bp}{\dot{m}_f \times CV} = \frac{104.9 \times 60}{\frac{4.4}{10} \times 44000} \times 100 = 32.5\%$$

Volume flow rate of air at intake condition

$$\dot{V}_a = \frac{\dot{m}_a RT}{p} = \frac{6 \times 287 \times 300}{1 \times 10^5} = 5.17 \text{ m}^3/\text{min}$$

$$V_s = \frac{\pi}{4}D^2 LnK = \frac{\pi}{4} \times 0.09^2 \times 0.08 \times \frac{4500}{2} \times 8 = 9.16 \text{ m}^3/\text{min}$$

$$\eta_v = \frac{5.17}{9.16} \times 100 = \mathbf{56.44}\%$$

$$imep = \frac{\frac{bp}{\eta_m} \times 60000}{LAnK} = \frac{\frac{31.39}{0.8} \times 60000}{0.12 \times \frac{\pi}{4}0.1^2 \times \frac{1600}{2} \times 4}$$

Ans

=
$$7.8 \times 10^5 \text{ Pa} = 7.8 \text{ bar}$$

$$bsfc = \frac{\dot{m}_f}{bp} = \frac{0.2 \times 60}{31.39} = 0.382 \text{ kg/kW h}$$

4.2 The following details were noted in a test on a four-cylinder, four-stroke engine, diameter = 100 mm; stroke = 120 mm; speed of the engine = 1600 rpm; fuel consumption = 0.2 kg/min; calorific value of fuel is 44000 kJ/kg; difference in tension on either side of the brake pulley = 40 kg; brake circumference is 300 cm. If the mechanical efficiency is 80%, calculate (i) brake thermal efficiency (ii) indicated thermal efficiency (iii) indicated mean effective pressure and (iv) brake specific fuel consumption

Solution

$$bp = \frac{2\pi NT}{60000} = \frac{2\pi NWR}{60000} = \frac{WN2\pi R}{60000}$$

$$= \frac{40 \times 9.81 \times 1600 \times 3}{60000} = 31.39 \text{ kW}$$

$$\eta_{bth} = \frac{bp}{\dot{m}_f \times CV} \times 100 = \frac{31.39 \times 60}{0.2 \times 44000} \times 100 = \mathbf{21.40\%} \stackrel{\mathbf{Ans}}{\rightleftharpoons}$$

$$\eta_{ith} = \frac{\eta_{bth}}{\eta_m} \times 100 = \frac{0.214}{0.80} \times 100 = \mathbf{26.75\%}$$

$$\stackrel{\mathbf{Ans}}{\rightleftharpoons}$$

4.3 The air flow to a four cylinder, four-stroke oil engine is measured by means of a 5 cm diameter orifice having a coefficient of discharge of 0.6. During a test on the engine the following data were recorded: bore = 10 cm; stroke = 12 cm; speed = 1200 rpm; brake torque = 120 Nm; fuel consumption = 5 kg/h; calorific value of fuel = 42 MJ/kg; pressure drop across orifice is 4.6 cm of water; ambient temperature and pressure are 17 °C and 1 bar respectively. Calculate (i) the thermal efficiency on brake power basis; (ii) the brake mean effective pressure and (iii) the volumetric efficiency based on free air condition.

Solution

$$\begin{array}{lll} bp & = & \frac{2\pi NT}{60000} = \frac{2\times\pi\times1200\times120}{60000} = 15.08 \, \mathrm{kW} \\ \\ \eta_{bth} & = & \frac{15.08\times60}{\frac{5}{60}\times42000}\times100 = \mathbf{25.85\%} & \stackrel{\mathbf{Ans}}{\rightleftharpoons} \\ \\ p_{im} & = & \frac{bp\times60000}{LAnK} \\ & = & \frac{15.08\times60000}{0.12\times\frac{\pi}{4}\times0.1^2\times\frac{1200}{2}\times4} = 4\times10^5 \, \mathrm{Pa} = \mathbf{4} \, \mathrm{bar} \, \stackrel{\mathbf{Ans}}{\rightleftharpoons} \\ \\ \dot{V}_a & = & C_d A \sqrt{2g\Delta h_w \frac{\rho_w}{\rho_a}} \\ \\ \rho_a & = & \frac{p}{RT} = \frac{10^5}{287\times290} = 1.20 \, \mathrm{kg/m^3} \\ \\ \dot{V}_a & = & 0.6\times\frac{\pi}{4}\times0.05^2\times\sqrt{2\times9.81\times0.046\times\frac{1000}{1.2}}\times60 \\ \\ & = & 1.938 \, \mathrm{m^3/min} \\ \\ V_s & = & \frac{\pi}{4}d^2LnK \\ \\ & = & \frac{\pi}{4}\times0.1^2\times0.12\times\frac{1200}{2}\times4 = 2.262 \, \mathrm{m^3/min} \\ \\ \eta_v & = & \frac{1.938}{2.262}\times100 = \mathbf{85.7\%} \end{array}$$

Extra notes:

External Evaluator		