

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2022-2023

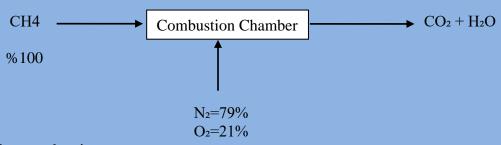
College/ Institute	Koya Technical Institute				
	-				
Department	Petroleum Technology				
Module Name	Heat and Mass Transfer				
Module Code					
Degree	Technical Diploma • Bachler				
	High Diploma Master PhD				
Semester	4 _{th}				
Qualification	PhD				
Scientific Title	Lecturer				
ECTS (Credits)					
Module type	Prerequisite Core • Assist.				
Weekly hours					
Weekly hours (Theory)	(2)hr Class ()Total hrs Workload				
Weekly hours (Practical)	(2)hr Class ()Total hrs Workload				
Number of Weeks	12				
Lecturer (Theory)	Dr. Barhm Abdullah Mohamad				
E-Mail & Mobile NO.	barhm.mohamad@epu.edu.iq 07512209152				
Lecturer (Practical)					
E-Mail & Mobile NO.					
Websites					

Course Book

	This course will focus on the Demonstrating the basic concepts of heat and					
	mass transfer and covering process related to heat and mass transfer such					
Course Description	as the	e methods of heat	transfer, heat a	nd mass trans	sfer equipment's such	
	as he	at exchangers, coo	oling towers, dis	tillation, abso	rption, extraction.	
	•	Providing knowl	edge about fund	damentals of I	heat and mass transfer.	
Course objectives	•	 Analysing how heat and mass transfer occur. 				
	•	Educating stude	nts to solve pro	blems.		
	•	Attending classe	es and participat	te in the lectu	re.	
Student's obligation	•	Make reports ar	nd studies on dif	fferent topics.		
ota a circ o congation	Assignment preparations.					
	Make quizzes and exams to make sure they got necessary					
Required Learning	•	knowledges.Handouts, notes and references.				
Materials	•	Showing necess				
iviaceriais	•	Showing equipm	nent on differen	t sites if possi	ble.	
		Task	Weight	Due	Relevant Learning	
			(Marks)	Week	Outcome	
	P	aper Review				
	P	aper Review Homework	5			
		1	5 2			
		Homework				
		Homework Class Activity	2			
Evaluation	Assignments	Homework Class Activity Report	2 10			
Evaluation		Homework Class Activity Report Seminar	2 10			
Evaluation		Homework Class Activity Report Seminar Essay Project	2 10			
Evaluation	Assignments	Homework Class Activity Report Seminar Essay Project	2 10 10			
Evaluation	Assignments Qui	Homework Class Activity Report Seminar Essay Project	2 10 10			
Evaluation	Assignments Quit Lab Mid	Homework Class Activity Report Seminar Essay Project	2 10 10 8 15			
Evaluation	Assignments Quit Lab Mid	Homework Class Activity Report Seminar Essay Project z	2 10 10 8 15 10 40			
	Assignments Quit Lab Mid Fina	Homework Class Activity Report Seminar Essay Project z term Exam al Exam	2 10 10 8 15 10 40 100	ansfer.		
Specific learning	Assignments Quit Lab Mid Fina Tota	Homework Class Activity Report Seminar Essay Project z term Exam al Exam al Theory of hea	2 10 10 8 15 10 40 100 t and mass tra	ansfer.		
	Assignments Quit Lab Mid Fina Tota 1	Homework Class Activity Report Seminar Essay Project z term Exam al Exam	2 10 10 8 15 10 40 100 t and mass trablems.		ns.	

Course References:

- 1. Bejan, A. and Kraus, A.D. (2003) Heat and Mass Transfer Handbook. John Wiley and Sons, Hoboken.
- 2. Cengel, Y. A., & Ghajar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (5th ed.). McGraw-Hill Professional.


Course topics (Theory)	Week	Learning Outcome
Introduction	1	General information
		about heat and mass
		transfer
Conduction, convection and radiation	2	Importance of types
		of heat transfer
Heat exchanger concepts	3	The selection of heat
		exchanger
Cooling tower	4	Cooling tower types
Psychrometric Chart	5	Psychrometric Chart
,		Principle and usages
Steam boiler	6	Steam generation
		types and its
		approaches
Furnace (Heater)	7	Basics design of
		heater
Combustion	8	The combustion
		phenomena
Absorption/desorption	9	Importance of
		absorption/desorption
Distillation	10	Distillation types and
		columns
Extraction	11	Extraction basics
Drying	12	Basics of drying and
, 0		application
Practical Topics		Learning
Tructicui Topico	Week	Outcome
Temperature Measurements and Calibration	1	Thermometer
	_	readings and
		calibration technique
Thermal conductivity	2	Measuring thermal
	_	conductivity of
		materials
		materials

Free and Forced Convection	3	Concepts of
		convection heat
		transfer
The effect of varying flow rate-parallel flow double pipe heat	4	Basic design of heat
exchanger		exchanger
The effect of varying flow rate-counter flow double pipe heat	5	Basic design of heat
exchanger		exchanger
The effect of varying flow rate-parallel flow shell and tube	6	Basic design of heat
heat exchanger		exchanger
The effect of varying flow rate-counter flow shell and tube	7	Basic design of heat
heat exchanger		exchanger
The effect of varying water flow rate on the performance of	8	The approaches of
mechanical draught cooling tower		mechanical draught
		cooling tower
Estimate the evaporation rate of water (water loss) for the	9	Factors affecting
cooling tower		Water evaporations
Gas absorption in packed tower with Raschig rings packings	10	Absorption process
		and the function of
		packings
Rotary dryer	11	Study and analysing
		the rate of drying

Questions Example Design

Ex. 1: Calculate the equivalence ratio for the following system, if you know the A/F Actual = 12: 1:

Solution:

Let complete combustion:

CH4 +
$$2O_2$$
 + $3.76N_2$ \longrightarrow CO₂ + $2 H_2O$ + $3.76N_2$

$$A/F\ Stoic. = \frac{\text{M.weight[air]}}{\text{M.weight[fuel]}}$$

$$=\frac{10.58}{12}=0.88$$
A/F Stoic. $=\frac{[2\times32]+[3.76\times28]}{[16]}=10.58$

Equivalence Ratio $[\theta] = \frac{A/F \text{ stoic.}}{A/F \text{ actual}}$

 θ <1 The mixture is lean.

Ex. 2: 20 kg of (C_3H_8) fuel burned with 400kg of air to product CO_2 and H_2O , what is the equivalence ratio for the following system, if you know the A/F Actual = 11 : 1 ?

Solution:

$$C_3H_8 + 5O_2 + 3.76 N_2$$
 \longrightarrow $3CO_2 + 4H_2O + 3.76 N_2$

Basis: 20 kg of C₃H₈ and 400kg of air [O₂, N₂]

A/F Stoic. =
$$\frac{\text{M.weight[air]}}{\text{M.weight[fuel]}}$$

$$\frac{A}{F}Stoic. = \frac{\frac{400}{160} + \frac{400}{105.28}}{\frac{20}{44}} = 13.85$$

Equivalence Ratio [
$$\theta$$
] = $\frac{A/F \text{ stoic.}}{A/F \text{ actual}} = \frac{13.85}{11} = 1.25$

Ex.2: In an air-carbon dioxide mixture at 298 K and 202.6 kPa, the concentration of CO_2 at two planes (3 mm) apart are 25 vol.% and 15 vol.% respectively. The diffusivity of CO_2 in air at 298 K and 202.6 kPa is 8.2×10^{-6} m²/s. Calculate the rate of transfer of CO_2 across the two planes, assuming:

- a. Equimolecular counter diffusion.
- b. Diffusion of CO₂ through a stagnant air layer.

Solution:

$$P_{A1} = y_{A1}$$
. $P_T = (0.25) 202.6 = 50.65 \text{ kPa}$

$$P_{A2} = y_{A2}$$
. $P_T = (0.15) 202.6 = 30.39 \text{ kPa}$

a. Equimolecular counter diffusion:

$$N_{A} = \frac{D_{AB}}{RT} \left[\frac{P_{A_{1}} - P_{A_{2}}}{z_{2} - z_{1}} \right]$$

$$N_{A} = \frac{8.2 \times 10^{-6}}{8.314 (298)} \left[\frac{50.65 - 30.39}{3 \times 10^{-3}} \right] = 2.23 \times 10^{-5} \frac{\text{kmol}}{\text{m}^{2} \cdot \text{s}}$$

b. Stagnant diffusion.

$$N_A = \frac{D_{AB}}{RT} \ \frac{P_T}{d_z} \ Ln \left[\frac{P_T - P_{A_2}}{P_T - P_{A_1}} \right] \label{eq:NA}$$

$$N_{A} = \frac{8.2 \times 10^{-6}}{(8.314)(298)} \frac{202.6}{3 \times 10^{-3}} \text{ Ln} \left[\frac{202.6 - 30.39}{202.6 - 50.65} \right] = 2.79 \times 10^{-5} \frac{\text{kmol}}{\text{m}^{2}.\text{ s}}$$

Extra notes:

External Evaluator