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ABSTRACT

The study analyzed surface treatment’s impact on mechanical properties of Fe-based amorphous
coatings. Specimens underwent six-hour treatments at 670 and 770 8C using vacuum heat. Results
revealed distinct mechanical features in the coating: Vickers hardness reached 755, scanning electron
microscope images displayed glassy phases, showcasing good wear resistance and compressive residual
stresses at around �55 MPa. A remarkable 122% increase in compressive residual stress was noted
through combined vacuum heat treatment and sandblasting. Volume wear decreased from the initial 18
to 14 mm3 after treatment at 670 8C followed by sandblasting, indicating a 30% enhancement in wear
resistance. Yet, using vacuum heat treatment at 770 8C negatively impacted the coating’s properties.

KEYWORDS
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1. INTRODUCTION

Every mechanical or structural component is chosen and created for a specific application.
Materials are generally classified into three categories: semi-crystalline, crystalline, and
amorphous, based on their structure. Amorphous materials, known for their durability
and wear resistance, such as Fe-based amorphous, are extensively used in various fields,
including mobile, aeronautical, automotive, and military equipment. To enhance me-
chanical resilience against stress, different materials and coating techniques, like glass,
ceramic, plastic, and elastic materials, are used. Techniques such as thermal spray, sol-gel,
electro-deposition, and micro-arc oxidation serve as protective layers against wear,
corrosion, and fatigue [1, 2]. High-Velocity Oxygen Fuel (HVOF) is a method that pro-
duces high wear resistance and hardness by blasting coating particles at high velocity and
low temperature [3].

The kinetic energy of the coating spray significantly impacts the layer properties,
increasing fatigue life. For instance, Cr3C2 single bond NiCr coating powder, when applied at
higher velocities, shows superior fatigue performance compared to uncoated or low-velocity
coated steel [4]. FeCrMnCoSi HVOF coating offers effective defence against abrasion,
corrosion, and erosion for stainless steel [5]. Optimal fatigue performance is achieved with
high-velocity processes and low powder temperature, inducing strong compressive stress
near the surface [5–7].

The substrate and coated layer nature affect the residual stresses near the surface,
impacting fracture toughness under different loads [8–11]. Coating amorphous materials, like
Fe-based amorphous on magnesium alloy, enhances corrosion resistance [12]. Various ele-
ments, including Ni, Cr, and rare earth elements, improve tribological properties in coatings
[13, 14].
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Amorphous materials exhibit special resistance due to
their disordered atomic structure, providing wear, corrosion,
hardness, sustainability, and high elastic modulus [15–17].
FeBSiNb coating materials resist erosive wear at high tem-
peratures, suitable for power plant use [18]. They lack
imperfections like dislocations and grain boundaries [19]
and can be produced via multiple techniques, although bulk
size is limited [20]. However, due to the absence of slip
bands, they are not recommended for structural applications
involving tensile or bearing loads [21].

Heat treatment stabilizes amorphous materials and is
advised for prepared coating amorphous alloys [22].
Controlled heat treatment of ZrCuAlNiTi metal glass en-
hances mechanical properties [23]. Heat treatment impacts
phase transitions, microstructures, and failure properties
in materials like Co69Fe4Cr4Si12B11 micro-wires before
coating [24]. Annealing temperatures influence corrosion
and erosion resistance in coated surfaces, increasing fric-
tion and wear resistance [25–27]. The heat treatment
affects amorphous fraction, which lead to reduce its value
with increasing of vacuum temperatures. The hardness,
and loses wear rate of heat treated coating layer were
increased [28]. Heat treatment is improved the mechanical
properties of coating as compared with untreated coating
layer [29]. Effects of heat treatment on the mechanical
properties of coating were investigated based on the
microstructural analysis. The results were indicated
increasing by bounding forces and hardness, whereas
decreasing of porosity [30].

Shot peening is a widely-used cold working method to
improve mechanical properties like fatigue life, hardness,
and residual stress [31–33]. It increases the micro-hardness
and service life of manufactured components like 5CrNiMo
dies [34]. The surface characteristics of the AISI 1045 [35]
steel alloy, which are used for wide range of mechanical
structures based on its high mechanical performance, opti-
mized by using shot peening process. It is influenced
by varying shot peening parameters, the effects figured
out by numerical modeling [36–43]. Achieving the best
mechanical properties requires a nanostructure at the ma-
terial’s surface [44].

In this study, various surface treatments are used to offer
cover layer enhanced mechanical properties than substrate
layer of 316L steel alloy. Ball milling is used to characterize
amorphous powder. Ball milling is used for 120 h to extract
coating material made of amorphous-based Fe, B, C, Cr,
Mn, Mo, Si, and W. The stainless steel 316L substrate layer
is coated using HVOF method. The coated material is
next subjected to a vacuum heat treatment procedure,
which is introduced under different values of temperatures
at 670–770 8C, in order to obtain the best improvements
in the mechanical properties. Further to investigate the
impact of sandblasting process on the coating layer, the
results of hardness, wear, residual stress, and microstruc-
tures are compared with the results of un-sandblasted
specimens. The effect of sandblasting process on the
bounding force between coating layer and the surface also,
is investigated.

2. METHODS AND EXPERIMENTAL

2.1. Preparing coating powder and specimens

Procured from Shandong Runhai Stainless Steel, a 316L
plate (40 3 303 2 cm) underwent hardness, stress, and
microstructure testing using cube-shaped and round speci-
mens as it is shown in Fig. 1. Chemical composition details
are in Table 1. The alloy boasts 570MPa yield stress,
685 MPa ultimate stress, and 300 Vickers Hardness (HV),
Fe-based amorphous, from USA-sourced powders (99.9%
purity). The various weights of powder components are
shown in Table 2, those were created with a 10:1 ratio
of components, milled for 120 h at 700 rpm [45, 46].
Specimens, polished and ground, underwent spray drying
(150 8C, 0.8% PolyVinyl Alcohol (PVA), 8,000 rpm). Final
argon atomization kept powder diameter within þ13 to
�55 μm. HVOF was chosen for coating due to its advan-
tages, Fig. 2 [4]. Coating layer thickness is measured by
electronic micrometer with accuracy value 0.001 mm.

The adhesion force between the substrate and coating
layer affects the coating’s performance in terms of hardness,
strength, and other factors. NiCrAlY bond coat, however, is
utilized to enhance adhesive contact [5]. Controlling the
substrate’s surface roughness is necessary to promote bond
coat adhesion [6]. Therefore, the surface of specimens was
cleaned, polished, and sandblasted by Silicon Carbide (SiC)
paper grit No. 20. The coating process is carried out using a
commercial machine (Met-Jet 4l, Metallization, West Mid-
lands, UK) and the HVOF spray technique is utilized under
conditions that listed in Table 3, and Fig. 2, which have been
understood from prior research [7]. The bounding strength
is inversely correlated with the coating layer thickness [8].
The coating layer is 250 μm thick. Standard test method
ASTM C633-13:2021 [47] The 250 μm thick coating layer
undergoes strength measurement using ASTM C633-
13:2021 [47] designed for thermal spray coatings, calculates
bounding strength. Two cylindrical specimens, coated
and substrate are bonded and tested for stress. Scanning

Fig. 1. a) b) Schematic of prepared specimens of substrate with,
without coating, and c) schematic of prepared wear specimen after

coating (Source: Authors’ plot)
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Electronic Microscope (SEM) JSM-6390A, JEOL Ltd, Tokyo,
analyzes coating microstructures before and after treatment.
Sandblasting studies its impact on coating efficiency,
using lab-selected sand (0.6–2.36 mm) to minimize surface
roughness.

2.2. Vacuum heat treatment

Coated samples undergo vacuum heat treatment, and
treated coatings are compared to untreated ones. Measure-
ments include amorphous powder, coating layers, and steel
alloy microstructures. Imperfections during coating appli-
cation are addressed for a stronger substrate-coating bond
through vacuum heat treatment [48–51]. Specimens are
heated in a vacuum furnace to the required temperature
(670, 770 8C) for 6 h.

2.3. Hardness, wear, and residual stresses,
measurement

To comprehend the behavior of prepared powder, coating
layer, and substrate during vacuum heat treatment, and

sandblasting, mechanical characteristics are assessed [52, 53];
encompassing hardness, wear resistance, and residual stresses.
Micro hardness, using HBRVS-187.5 Digital Universal
Hardness Tester, is determined pre and post-sandblasting
with a Vickers indenter (150 kg load, 10 s). The wear spec-
imen, polished with wet grinding SiC paper (1,600 grit) and
ultrasonically cleaned, undergoes wear resistance testing
using Tribometer-CETR, UMT-2, USA, with Al2O3 ring-
disc, loads of 40 and 60 N, and speeds of 0.017, 0.043, and
0.062 m s�1 for 45min at 300 rpm. Residual stresses are
gauged via X-Ray Diffraction (XRD) method, XRD 6000,
focusing on the surface’s depth of 5–15 μm using the sin 2 w
method, 3 mm irradiation area, radiation CrKα, and diffrac-
tion angle 2θ. Accuracy is ensured by recording residual
stress values at five distinct locations.

3. RESULTS

3.1. Structures and thermal stability

Coated of stainless steel plate 316L with dimensions 40 3 30
3 20 is shown in Fig. 3. It was clear that the highest per-
centage of Fe is present in powder, followed by Cr, Mo, and B
elements, in that ratio. It can be seen clearly in Fig. 4a and b
of Differential Scanning Calorimeter (DSC), and XRD, the
arrangement and coverage of thermal amount of powder
before heat treatment is almost have same values of heat,
but it is diverging when utilized vacuum heat treatment.
For the generated powder, the amount of crystallization
temperatures and crystallization enthalpy are listed in
Table 4. The convergence among the values of powder, as
coting indicated that amorphous structures are same. The
particles size of powder is in range of þ13 to �55 μm as it is
seen by SEM. XRD diffraction of powder, as coating, and at
vacuum heat treatment demonstrated that there are no
crystalline phase peaks except that of broad amorphous
diffraction peak at 448.

The vacuum heat treatment enhanced the amorphous
phase transformation. The considerable amorphous diffrac-
tion peak shows that the powders have significant amor-
phous phase content. In spite of the powder was initially
amorphous, as it can be seen in Fig. 5a, the vacuum
heat treatment at 670 8C is made the nano-crystallization
phases very clear than which under vacuum heat treatment
at 770 8C that is formed crystallization phase. The particles,
which growth in the argon had semi spherical shapes. The

Table 1. Chemical composition of steel alloy grade 316L (w %) (Source: Authors’ result)

Fe Cr Ni Mo Mn Si Cu Co P S

Bal. 16.5 12.3 2.3 1.4 0.48 0.4 0.28 0.041 0.002

Table 2. Content of elements which mixing by ball milling machine (Source: Authors’ result)

Elements Cr Fe Mo Mn Si C B W

Weight (g) 183.4 560.3 140.8 1.8 13.9 8.9 32.8 58.7

Fig. 2. Schematic of HVOF machine (Source: Authors’ plot)Q6

Table 3. HVOF parameters during coating process (Source:
Authors’ result)

Parameter Units Condition

Oxygen standard liter per minute
(NLPM)

895

Feed rate gram per min 40
Spraying distance m 0.39
Carrier gas (argon) letters per min 8
Combustion pressure bar 10
Kerosene flow ml per min. 295
Gun of nozzle M 0.12
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particles tend to be clumpy with satellites attached. The
manner of preparation may be to blame for the clumpy
particles. A fine adhesion of substrate and coating layer in-
dicates that the fluidity of the particles is fine. HVOF pro-
duces molten powder and a uniform coating layer with very
few oxidation and porosity as it can be seen in Fig. 5a–d. Due
to high level of homogeneous and stability the vacuum heat
treatment 670 8C does not has significant effect on the
crystallization of coating. Meanwhile, the crystalline phases
formed clearly during vacuum heat treatment at 770 8C
which had negative impact on the coating layer. On other
hand, after heat treatment at 770 8C, the coating layer tends
to weaken, lose adherence and flake. The flattened droplets
contained tiny pores, which grew because shrinking of
porosity. Due to the phenomenon of losing gas porosity,
many pores have formed among flattened droplets. The
pores in the surface layer might be result of series sprayed
powder in the high speed on the previous amount of coating
layer. The defects in the microstructures in Fig. 5d is result
of sand blasting process will discuss in next section.

3.2. Sandblast effect on coating

The surface of specimens shot by tiny media (metals,
sand, and glass) may have enhanced hardness of surface,
compressive RSs, and refined surface structures. During the
shot peening process, a force is generated against the di-
rection of shooting. It is generated reactions forces caused
compressive residual stresses close to the surface; these
forces refine grain size, and increasing surface hardness, and

wear resistance. Heat treatment of coating followed by shot
peening process result by high hardness, wear resistance,
and low porosity [9, 10]. The peening process has a finite
growth limit [11]. The hard shot peening process harm
porosity of coating layer. Impacting coating surface result to
compact particles of coating layer and splats areas, as well
induced compressive residual stresses [12]. Therefore,
sandblast instead of shot peening was used in this study.

Fig. 3. a) Coated surface of plate, b) sample of wear test with dia.
30 mm (Source: Authors’ plot)

Fig. 4. a) DSC of powder, as sprayed, with vacuum heat treatment
670 8C, and 770 8C, b) XRD of amorphous materials, as - sprayed
coating, under vacuum heat treatment 670 8C, and 770 8C (Source:

Authors’ result) Q7

Table 4. Enthalpy of crystallization and temperature of
crystallization of coating and powder (Source: Authors’ result)

Status Tx [8C] DH [J g�1]

As produced powder 737.98 �10.23
As coating without treatment 738.34 �11.91
Coating layer with heat treatment
670 8C

738.01 �17.05

Coating layer with heat treatment
770 8C

732.52 �3.828
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As demonstrated in Fig. 5d, the effects of sandblasting
process are clear on the surface layer, which remove the
crack pitting near surface. In additionally, the bound
strength of the coating layer with the substrate and wear
resistance was increased. In every instance, sandblasted
specimens demonstrated mechanical improvement more
favorably than those without a sandblasting treatment. It
might belong to the crystallization structure of the coating
layer after the surface treatment process, which can
controlled during the heat treatment process [2, 10]. Relaxed
tension residual stresses were produced as a result of plastic
deformation caused by sliding spherical tips on the coated
surface [13]. Compressive surface residual stresses were an
outcome of the sandblasting process, which further
improved hardness and wear resistance Figs 6–11. Figure 7

shows the effect of various surface treatments on the wear
rate of steel and coating materials. As it can be seen in
Fig. 3b, the sliding contact surface fills with flaws including
deep grooves, voids, and cracks. It results from the inter-
action of adhesive and abrasive of the working surface with
sliding load during wear test. The wear rate was increased
slightly with increasing spindle speed but had very low
sensitivity for the applied load, as it is shown in Fig. 8.

The coating’s greatest wear rate resistance was produced
at its slowest speed with a 40 N load, approximately 19 mm3.
The wear rate was increased gradually with increasing of
spindle speed, as it can be seen in Fig. 8. Vacuum heat
treatment and sandblasting significantly reduced the wear
rate. The amorphous phase manifested during vacuum
heat treatment at 670 8C, and the hardening surface out-
come a reduction for wear rate. It is not had significant
enhancement after vacuum heat treatment at 670 8C better

Fig. 5. SEM image of a) as coating layer without treatment,
b) coating layer under vacuum heat treatment at 670 8C, c) coating
layer with vacuum heat at 770 8C, d) coating with different surface
are vacuum treatment, heat treatment and sandblasting process

(Source: Authors’ result)

Fig. 6. The relationship of compressive residual stresses with
different surface treatment process (Source: Authors’ result)

Fig. 7. Effect of surface treatment on the volume wear rate (Source:
Authors’ result)

Fig. 8. Relationship of load with the wear rate losses (Source:
Authors’ result)
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than at 770 8C, additionally some dark pitting and cracks
were elevated which result of formed crystallization at
770 8C, as it is shown in Fig. 9.

The bounding strength is depending on the roughness
of surface [12, 14, 15]. The bounding strength is about
27 MPa when surface roughness 5.5 μm, as it can be seen in
Fig. 10. During roughness range between 5.5 and 6.4 μm the
bounding strength almost same values, but it increased
dramatically in the range between 6.4 and 8 μm. At vacuum
heat treatment 670 8C the bounding strength was enhanced.

In contrary, the result of vacuum heat treatment at
770 8C was sharp descend. It might be back to formed phases
during heat treatment. Amorphous coating of Fe has a high
hardness value of around 755 HV. Vacuum heat treatment
and sandblasting were used to increase the coating’s hard-
ness. Additionally, employing an annealing temperature at
670 8C improved the base coating layer by about 30%, but

utilizing vacuum heat treatment 670 8C followed by sand-
blasting process improved it by about 37%. Contrarily, as
demonstrated in Fig. 11, the improvement of vacuum heat
treatment at 770 8C does not exceed 10%, even when fol-
lowed by a sandblasting process. It can be regarded as a
result of the rise of a new phase after vacuum heat treatment
at 770 8C.

4. CONCLUSIONS

The article delved into crafting amorphous material and
assessing how vacuum heat treatment and sandblasting
impact its properties. The conclusions drawn were:

� Using a 120-h ball milling process with high glass content
achieves amorphous material characteristics. Coating Fe-
based amorphous material through the HVOF method
displays potential for diverse applications due to its su-
perior mechanical traits such as hardness, wear resistance,
and residual stresses;

� This method yields material with low porosity, robust
bonding, and high hardness;

� Vacuum heat treatment 670 8C is improved hardness,
wear rate, and microstructures of coating. Vacuum heat
treatment at 770 8C the mentioned properties were
improved, but mechanical defects were appeared;

� The coating and subsequent sandblasting processes
decrease wear, elevate hardness, and induce compressive
residual stresses. Hence, precise control of sandblasting
parameters is crucial to optimize outcomes in the coating
process;

� HVOF technique yields strong bonding. Vacuum heat
treatment and sandblasting significantly improve bonding
compared to untreated surfaces.

Fig. 9. Relationship between losses of wear rate and sliding speed
(Source: Authors’ result)

Fig. 10. Effect of surface roughness on the bonding strength under
different conditions (Source: Authors’ result)

Fig. 11. Effect of surface treatment on the hardness of Fe-based
amorphous (Source: Authors’ result)
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� In the future study, it might be using other coating tech-
nique with different parameters and compare the results
with current study.

� Using optimization algorithms for coating parameters to
obtain optimal mechanicalQ5 properties.
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