

Module (Course Syllabus) Catalogue 2023-2024

College/ Institute	College of Engineering					
Department	Highway Engineering Department					
Module Name	STRENGTH OF MATERIALS-1					
Module Code	STM 302					
Semester	Semester Three					
Credits	6					
Module type	Prerequisite	Core	e //	Assist.		
Weekly hours	4 hours/week					
Weekly hours (Theory)	(4) hrs. In Class		(162) hrs. Workload			
Weekly hours (Practical)	0					
Lecturer (Theory)	Bakhtyar Nassih Najar					
E-Mail & Mobile NO.	bakhtyar.najar@epu.edu.iq (0750-430-1936)					
Lecturer (Practical)	0					
E-Mail & Mobile NO.						

Course Book

Course Description	Covers the relationship between stress and strain on deformable solids. Applies analysis to members subjected to axial, bending, and torsional loads.			
Course objectives	Stress/ deformation relationships for continuous media to structural member; axially loaded members; thin-walled pressure vessels; torsional and flexural members; shear; moment; deflection of member; combined loadings; stability of columns; indeterminate members; shear center, non-symmetrical bending, shear center.			
Student's obligation	 Class starts on time. Late are not allowed. Quiz is expectable every week. Mobile telephone is not allowable in the study hall. Food and drinks are not allowable in the study hall 			
Required Learning Materials	Concept of Stress, Stress and Strain-Axial Loading, Torsion, Shear Force and Bending Moment in Beams, Shear Force and Bending Moment Diagram in Beams, Bending Stresses in beams.			
Assessment scheme	Individual, small group, and full class discussion; homework problems; examinations; and small group problem-solving sessions may be used to assess outcomes. Lecture, homework, and in-class group activities will be coordinated. Specific evaluation procedures will be defined during the first week of class. In general, grading will depend on weekly tests, homework, class participation, and a comprehensive final exam.			
	Upon completion of the course student should be able to:			
Specific learning outcome:	 Analyze and design structural members subjected to tension, compression, torsion, bending using the fundamental concepts of stress, strain and elastic behavior of materials. Utilize appropriate materials in design considering engineering properties, sustainability, cost and weight. Perform engineering work in accordance with ethical and economic constraints related to the design of structures and machine parts. 			
Course References:	1- Mechanics of Materials, Sixth Edition, By: James M. Gere.			
	2- Mechanics of Materials, Eight Edition, By: R.C. Hibbeler.			
	3- Mechanics of Materials, Sixth Edition, By: Ferdinand P. Beer, E. Russell Johnston, Jr., John T. Dewolf, David F. Mazurek.			

Directorate of Quality Assurance and Accreditation

بهریو بهرایهتی دڵ یایی جوٚری و

100% Engineering Science Weekly plan:

- 1. Tension, Compression, and Shear.
- 2. Axially Loaded Members
- 3. Torsion
- 4. Shear and Bending Moment forces.
- 5. Shear and Bending Moment Diagram