

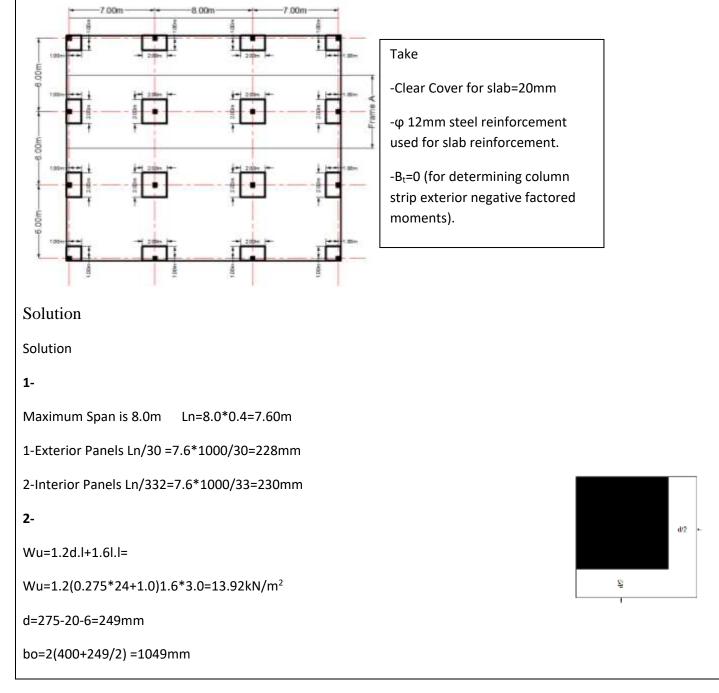
Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue

2023-2024

College/ Institute	College of Erbil Technical Engineering					
Department	Civil Engineering					
Module Name	Reinforced Concrete Structures					
Module Code	RCS702					
Degree	Technical Diploma Bachler					
	High Diploma Master PhD					
Semester	7 th Semester					
Qualification	BSc Civil Engineering Techniques/ Erbil					
Scientific Title	Assistant Professor					
ECTS (Credits)	6					
Module type	Prerequisite Core Assist.					
Weekly hours						
Weekly hours (Theory)	(4)hr Class (162)Total hrs Workload					
Weekly hours (Practical)	()hr Class ()Total hrs Workload					
Number of Weeks	12					
Lecturer (Theory)	Dr. Bahman Omar Taha					
	Ms. Zina A. Abduljaleel					
E-Mail & Mobile NO.	Email: <u>bahman.taha@epu.edu.iq</u>					
	Email: zina.abduljaleel@epu.edu.iq					
Lecturer (Practical)						
E-Mail & Mobile NO.						
Websites						

Course Book


Evaluation	TaskWeight (Marks)Due WeekRelevant Learning Outcomev Assurance and Accreditation					
Required Learning Materials	Different pedagogical methods are used in this course; for example, project, report, and homework, easy. Student will receive the required handouts such as the references.					
Specific learning outcome:	 On successful completion of this course, each student is able to: a) Analysis, and design reinforced concrete beams for Torsion b) Design and check for serviceability (crack and deflection) conditions. c) Analysis, and design of reinforced concrete two-way slabs using different approaches d) Analysis, and design of 2Story RC building structures e) Apply concepts for reinforced concrete and prestressed concrete design 					
Student's obligation	The students are required to: -Attend all the lectures and participate in the classwork and assignments. -Participate in the exam.					
Course objectives	The main aim and purpose behind the study of reinforced concrete structures is to give students a good understanding of the design and behaviour of reinforced concrete structures at the ultimate limit state. We will look at the design of framed building structures in some detail with particular emphasis on the design of torsion of beams, two-way slabs, shear walls, reinforced concrete tanks, Prestressed concrete and reinforced concrete bridges.					
Course Description	Emphasis is placed on understanding structural behaviour and the background to the design methods in ACI and other codes where appropriate. By the end of this module students will have a good understanding of the design and behaviour of reinforced concrete structures.					

	Paper Review				
	Homework		10%		
	Assignments	Class Activity	2%		
		Report			All
		Seminar	8%		
		Essay			
		Project	8%		
	Quiz 8%				
	Lab.				
	Midterm Exam 24%				
	Final Exam 40%				
	Total		100%		
Course References:	2- 3-	l Charles W. Dolan 2 "Reinforced Concret Macgregor 1997. "Reinforced Concret 2010. "Reinforced Concret	te Mechanics and te Design of tall B	uildings", Bungal	le S. Taranath,
		Nawy 2005.	e a Fundamentai	арргоаст піті	edition, Edward G.
Course topics (The	eory)			Week	Learning Outcome
Course topics (The Introduction Torsion in beams	eory)				Learning
Introduction	eory)			Week	Learning Outcome
Introduction Torsion in beams Beams Defection Control	& Design: nod.	Nawy 2005.		Week 1-2	Learning Outcome a)
Introduction Torsion in beams Beams Defection Control Beams Crack Control Method of Slab Analysis & - Direct Design Meth	& Design: nod. Method. & Design:	Nawy 2005.		Week 1-2 3	Learning Outcome a) b)
Introduction Torsion in beams Beams Defection Control Beams Crack Control Method of Slab Analysis & - Direct Design Meth - Equivalent Design Method of Slab Analysis &	& Design: nod. Method. & Design: Method.	Nawy 2005.		Week 1-2 3 4-7	Learning Outcome a) b) c)
Introduction Torsion in beams Beams Defection Control Beams Crack Control Method of Slab Analysis & - Direct Design Meth - Equivalent Design Method of Slab Analysis & - Equivalent Design	& Design: nod. Method. & Design: Method.	Nawy 2005.		Week 1-2 3 4-7 8-9	Learning Outcome a) b) c) c)
Introduction Torsion in beams Beams Defection Control Beams Crack Control Method of Slab Analysis & - Direct Design Meth - Equivalent Design Method of Slab Analysis & - Equivalent Design Design of Multi-storey Bui	& Design: nod. Method. & Design: Method.	Nawy 2005.		Week 1-2 3 4-7 8-9 10	Learning Outcomea)b)c)c)d)

Questions Example Design

Q1/ A two-way slab floor system as shown below. It is divided into 9 panels. Cylindrical Concrete compressive strength, fc=25MPa and steel yield strength, fy=420MPa. Additional dead load=1.0 kN/m², service live load is to be taken 3.0kN/m², story height is 3.70m. The preliminary sizes are as follows Slab thickness is 250mm, Slab thickness is 400mm at drops columns sizes are 400x400 mm. Determine

- 1- Minimum Slab Thickness according to ACI Code
- 2- Using Equivalent Frame Method Find column strip & Middle Strip (+ve and -ve) moments for Frame A
- 3- Find the Required steel and spacing for the maximum +ve & -ve moments of Frame A

a)
$$\theta Vc = \left[1 + \frac{2}{B_0}\right]_0^{\theta} \sqrt{fc} + b_{c,d} d$$

 $\theta Vc = \left[1 + \frac{2}{B_0}\right]_0^{\theta} \sqrt{fc} + b_{c,d} d$
 $\theta Vc = \left[\frac{a+d}{b_0} + 2\right] \frac{0}{b_0} \sqrt{fc} + b_{o,d} d$
 $\theta Vc = \left[\frac{a+d}{b_0} + 2\right] \frac{0}{12} \sqrt{fc} + b_{o,d} d$
 $\theta Vc = \left[\frac{a+d}{b_0} + 2\right] \frac{0}{12} \sqrt{fc} + b_{o,d} d$
 $\theta Vc = \left[\frac{a+d}{b_0} + 2\right] \frac{0}{12} \sqrt{fc} + b_{o,d} d$
 $\theta Vc = \left[\frac{a+d}{b_0} + 2\right] \frac{0}{12} \sqrt{fc} + b_{o,d} d$
 $\theta Vc = \left[\frac{a+d}{b_0} + 2\right] \frac{0}{12} \sqrt{fc} + b_{o,d} d$
 $\theta Vc = \left[\frac{a+d}{b_0} + 2\right] \frac{0}{12} \sqrt{fc} + b_{o,d} d$
 $\theta Vc = \left[\frac{a+d}{b_0} + 2\right] \frac{0}{b_0} \frac{1}{b_0} + 249 = 326.50 kN$
Applied Vu=13.92*(3.5*3-0.5245*0.5245) = 142.33 kN < $\varphi Vc \ ok$
3.
Mo1=1/8*6*13.92*6.6²=454.77 KN.m
Mo1=1/8*6*13.92*7.6²=603.01 kN.m
 $0.52Mo$
 $0.26Mo$
 $0.70Mo$
 $0.65Mo$
 $0.70Mo$
 $0.65Mo$
 $0.70Mo$
 $0.26Mo$
 $0.70Mo$
 $0.26Mo$
 $0.26Mo$
 $0.70Mo$
 $0.26Mo$
 $0.26Mo$
 $0.70Mo$
 $0.26Mo$
 0.21105
 391.96
 318.34
 118.24
 118.24
 118.24
 118.24
 118.24
 110.5
 391.96
 211.05
 391.96
 211.05
 391.96
 211.05
 391.96
 211.05
 391.96
 211.05
 391.96
 211.05
 391.96
 233.97

Directorate of Quality Assurance and Accreditation

بېريۆەببەرايەتى دأنيايى جۆرى و متمانەبەخشىن

Middle Str.	0	94.59	79.59	97.99	94.42	97.99
4.						
$C = \left(1 - 0.63\right)^2$	$\left(\frac{x}{y}\right)\frac{x^3y}{3} = \left(1 - 0\right)$	$63\frac{275}{400}\Big)\frac{275^3}{3}$	$\frac{400}{2} = 157189$	7135 <i>mm</i> ⁴		
$Ec = 4700\sqrt{f^{\circ}c}$	$\overline{c} = 4700\sqrt{25} =$	23500 <i>MPa</i>				
$\mathbf{Kt} = \sum \frac{\mathbf{9E}}{\mathbf{l}_2 \left(1 - \frac{\mathbf{9E}}{2}\right)}$	$\frac{\mathbf{C}_{\rm CS}\mathbf{C}}{\mathbf{C}_2/\mathbf{l}_2}^3$					
$Kt = \sum \frac{9 * 235}{6000}$	$\frac{00*157189713}{\left(1-400/6000\right)^3}$	$\frac{5}{2} = 6.82 * 10^4 \mathrm{k}$	N.m			
Ic=400*400 ³ /12	=2133333333mn	1 ⁴				
Kc=4EI/L=4*235	00*21333333333,	/ (3.7*1000) =5.4	42*10⁴ kN.m			
$\operatorname{Kec} = \frac{\sum \operatorname{Kec}}{1 + \frac{\sum \operatorname{Fe}}{\operatorname{Kec}}}$	k Kc					
	$\frac{42*10^4}{.42*10^4} = 6.04$ $\frac{32*10^4}{.82*10^4}$	4*10 ⁴ kN.m				
-	vertical steel rein ear loads having			-	e effect of	<u>(30 marks)</u>
Take					(Tu=38kN.m
-Clear Cover fo	or beam=40mm					0.75m
-φ 10mm stee	l reinforcement ι	used for vertical	steel reinforcem	ent.	E	9
-d=540mm					0.60m	
						30m -
						Vu=156kN

Solution

Ти<0.083ФV f`c (А²ср / Рср)

ACP=750*150+450*300=247500 mm²

PCP=750+600+300+450+450+150=2700mm

0.083*0.75V 28 (247500² / 2700) =7.47*10⁶ N.mm=7.47kN.m

Tu=38< 7.47 Need Torsion Design

=Check equation %

X_o=300-2*40*10=210mm

Y_o=600-2*40*10=510mm

Aoh=210*510=107100

Ph=2(X_o+ Y_o) =2(210+510) =1440mm

$$Vc = \frac{1}{6}\sqrt{f^{c}c} * bw * d$$

$$Vc = \frac{1}{6}\sqrt{28} * 300 * 540 = 142.87kN$$

$$\sqrt{\left[\frac{Vu}{bw\,d}\right]^2 + \left[\frac{Tu\,ph}{1.7\,Aoh^2}\right]^2} \le \emptyset\left(\frac{Vc}{bw\,d} + 0.66\sqrt{f^*c}\right)$$

$$\sqrt{\left(\frac{156*10^3}{300*540}\right)^2 + \left(\frac{38*10^6*1440}{1.7*107100^2}\right)^2} \le 0.75\left(\frac{142.87*10^3}{300*540} + 0.66*\sqrt{28}\right)$$

2.97 < 3.28 O.K.

Vu > φVc

156 > 0.75*142.87=107.15 Need stirrups for shear

$$Vs = \frac{Vu}{\emptyset} - Vc$$
$$Vs = \frac{156}{0.75} - 142.87 = 65.13kN$$
$$Vs \neq S$$

 $Av = \frac{Vs * S}{fy * d}$

$$Av = \frac{65.13 \times 10^3 \times 5}{414 \times 540} = 0.295$$

$$Tn = \frac{2 \times A_0 \times 4t \times fyv}{5} cot0$$
A_c=0.85*A0h=0.85*107100=91035mm²
38 \times 10^9
0.75 = \frac{2 \times 91035 \times At \times 414}{5}
At=0.67*5
Av+2*At=0.295+2*0.675=1.635 $\times \frac{1}{3} \frac{100 \times 5}{fy} = \frac{1300 \times 5}{3.444} = 0.245$
For φ 10mm 2A=2*78.5=157mm²
157=1.63 S
S=96.3mm
Smax=300mm
Use φ 10mm @95mm c/c
At $= \frac{4t}{s} Ph \frac{fyt}{fyt} cot0^2 = 0.67 \times 1440 = 964.8 mm^2$
Attmin = $0.42\sqrt{T}c \frac{ACP}{fyt} - \frac{4t}{s} Ph \frac{fyt}{fyt}$
 $\frac{At}{s} = 0.67 \ge 0.175 \frac{300}{414} = 0.13$
Atmin = $0.42\sqrt{28} \frac{247500}{414} - 0.67 \times 1440 \times 1 = 363.83mm^2$

Extra notes: * ECTS Calculation									
Erbil Technical Engineering College									
Program: Bachelor (240 ECTS)									
Department na	me:	Tech	nical Civil Engineering De	ept.					
# 15-20									
(Min. 12 weeks active lecturing (Including Mid Term exams with no stopping of lectures) + 3 weeks Final & Re-sit Exams									
Lecturer Name: Asst. Prof. Dr. Bahman Omar Taha							1.0 ECTS =	27	working hours
Module Name: Reinforced Concrete Str			d Concrete Structures				Х	Y	Z
Module Code: RCS702			RCS702				4	0	0
ECTS Workload Calculation Form									
Activity	S		Description	Activity	No.	T.F. Range		Time	Workload
						Min	Max		
	1	Theony	In class	f	12			4	48
	2	Theory	Online	f	0			4	0
	3	Prep	aration: (1-2)* X)	h	12	4	8	6	72
Course	4		Practical	f	0			0	0
	5	Preparation: (1-1.5)* Y		h	0	0	0	2.5	0
	6	Tutorial		f	0	1	1	0	0
	7	Prepar	ration (0.5-1.5) * Z)	h	0	0	0	1.5	0
Site Visists	8	Scie	ntific/Field Trips	f	0	2	6	4	0
and Lab Experiments	9	Practical/Lab Reports		h	0	1	2	1.5	0
	10	Homework		h	2	1	4	4	8
	11	Report		h		1	4		0
A	12	Seminar		h	1	2	10	10	10
Assignment	13	Paper		h		4	15		0
	14		Essay	h		1	6		0
	15	Р	roject/Poster	h	1	4	15	4	4
	16	Quiz		h	2	1	2	1	2
	17		Theory	f	1			1	1
	18	Mid Tama	Preparation: (1.5-3)*X	h	1	6	12	6	6
	19	Mid Term	Practical	f	0			1	0
Assessment	20		Preparation: (1-2)*Y	h	0	0	0	3	0
	21		Theory	f	1			2	2
	22	Final	Preparation: (3-5)*X	h	1	12	20	12	12
	23		Practical	f	0			1	0
	24		Preparation: (2-4)*Y	h	0	0	0	5	0
Face to face hours (f)/12 week		4.25	Face to face hours (f)			51			
Home hours (h)/15 week			7.60	Home hours (h)				114	
Total hours/15 week 11.00				Total hours				165	
ECTS (Total hours/ 27)						6.111			

External Evaluator External Evaluator The course catalogue satisfies and adequate for the module Reinforced Concrete Structures RCS702.

Prof. Dr. Mereen Hassan Fahmi Rasheed