

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

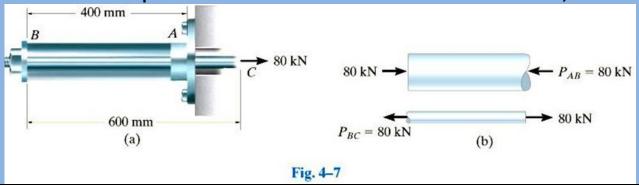
Module (Course Syllabus) Catalogue 2021-2022

College/ Institute	Erbil Technical Engineering College			
Department	Mechanical and Energy Engineering			
-	Techniques			
Module Name	Strengths Of Materials			
Module Code	STM403			
Degree	Technical Diploma Bachler			
	High Diploma Master PhD			
Semester	forth			
Qualification	MSc in applied Mechanics			
Scientific Title	Lecturer			
ECTS (Credits)	5			
Module type	Prerequisite Core Assist.			
Weekly hours	4			
Weekly hours (Theory)	(2)hr Class ()Total hrs Workload			
Weekly hours (Practical)	(2)hr Class ()Total hrs Workload			
Number of Weeks	12			
Lecturer (Theory)	Mrs. Ava Ali Kamal Mohammed			
E-Mail & Mobile NO.	Ava.mohammed@epu.edu.iq 07504885781			
Lecturer (Practical)	Mrs. Ava Ali Kamal Mohammed			
E-Mail & Mobile NO.	Ava.mohammed@epu.edu.iq 07504885781			
Websites				

Course Book

	Strength of Materials is a branch of mechanics that studies the relationships between the external loads applied to a
	deformable body and the intensity of internal forces acting within the body.
Course Description	Strength of Materials also involves computing the deformations of the body, and it provides a study of the body's stability when the body is subjected to external forces. The main concern of the strength of materials deals with understanding the (axial, direct shear, torsional shear, bending, transverse shear, combined load) stresses and their effects on a machine or structure.
	This course is designed to give student's skill to find a type of stresses prone mechanism or structure and conclude their effects in both elastic and plastic limits. This course is essential to understand the basics of Machine Design, where the student capable to design a machine according to the type of stresses applied to it.
Course objectives	Studying all types of stresses (tension, compression, direct shear, torsional shear, bending) or combined of them on a mechanism or structure and if the strain is in the elastic or in plastic limit.
	Attendance in the all lectures.
Student's obligation	 Several quizzes and assignment. Exam in end of the course.
Required Learning Materials	Lecture halls Using data show, white board and BowerBoint
iviateriais	PowerPoint.Testing in Mechanical Eng. Dep./Salahaddin University Laboratory.
	Publish all lecture notes in college website

	Task		Weight (Marks)	Due Week	Relevant Learning Outcome		
	F	Paper Review					
		Homework	5%	6-7			
	Assignments	Class Activity	2%	1-9			
		Report	5%	5-6			
		Seminar	5%	8			
Evaluation	nts	Essay					
		Poster					
	Quiz		8%	5-6			
	Lab).	10%	1-9			
	Midterm Exam		25%	10-11			
	Fin	al Exam	40%	11-12			
	Total		100%				
	1- Stress and strain in general.						
Specific learning	2-Stress- strain behavior of Ductile and Brittle Materials						
outcome:	_	subjected to axial and torsional load.					
	3-All-important types of stresses and strains axial, direct						
	shear, torsion, bending, transverse shear 4-Deflection of beam and shafts.						
					th edition, 2008.		
Course References:	Beer, Johnston & DE Wolf, "Mechanics of Materials ", 4th						
	edition 2006.						
	• R.S. Khurmi, "Applied Mechanics and Strength of Materials" SI units, 2005.						
		-					
					Looming		
Course topics (Theory)			Week	Learning Outcome			


Course topics (Theory)	Week	Learning Outcome
Meaning of stress, Axial stress.	1-2	1
Direct shear stress (single & Double).	3	1
Stress- strain behavior of ductile and brittle Materials subjected to axial and torsional load.	4	2
Deformation, linear Normal strain& shear strain		

Torsion	5	3
Resultant internal loading	6	3
Shear force and bending moment diagrams	7	3
bending	8	3
deflection	10	4
Transverse shear	11	3
Practical Topics		Learning
Tractical Topics	Week	Outcome
Tensile Test	Week 1	
-		Outcome Stress and strain
Tensile Test	1	Outcome Stress and strain in elastic & plastic Stress and strain
Tensile Test Compression test	2	Outcome Stress and strain in elastic & plastic Stress and strain in elastic & plastic Torsional stress
Tensile Test Compression test Torsion test	2 3	Outcome Stress and strain in elastic & plastic Stress and strain in elastic & plastic Torsional stress &strain

Questions Example Design

1. Compositional:

Q/ The assembly shown in Fig. 4–7a consists of an aluminium tube AB having a cross-sectional area of 400 mm2. A steel rod having a diameter of 10 mm is attached to a rigid collar and passes through the tube. If a tensile load of 80 kN is applied to the rod, determine the displacement of the end C of the rod. Take Est. = 200 GPa, EAI. = 70 GPa.

SOLUTION

Internal Force. The free-body diagram of the tube and rod segments in Fig. 4–7b, shows that the rod is subjected to a tension of 80 kN and the tube is subjected to a compression of 80 kN.

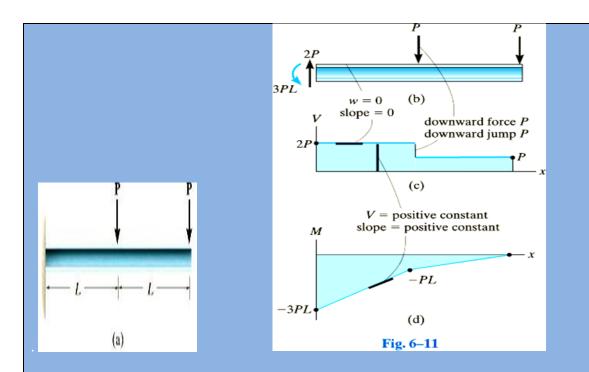
Displacement. We will first determine the displacement of end C with respect to end B. Working in units of newtons and meters, we have

$$\delta_{C/B} = \frac{PL}{AE} = \frac{[+80(10^3) \text{ N}](0.6 \text{ m})}{\pi (0.005 \text{ m})^2 [200(10^9) \text{ N/m}^2]} = +0.003056 \text{ m} \rightarrow$$

The positive sign indicates that end C moves to the right relative to end B, since the bar elongates.

The displacement of end B with respect to the fixed end A is

$$\delta_B = \frac{PL}{AE} = \frac{[-80(10^3) \text{ N}](0.4 \text{ m})}{[400 \text{ mm}^2(10^{-6}) \text{ m}^2/\text{mm}^2][70(10^9) \text{ N/m}^2]}$$
$$= -0.001143 \text{ m} = 0.001143 \text{ m} \rightarrow$$


Here the negative sign indicates that the tube shortens, and so B moves to the *right* relative to A.

Since both displacements are to the right, the displacement of C relative to the fixed end A is therefore

(
$$\stackrel{\pm}{\to}$$
) $\delta_C = \delta_B + \delta_{C/B} = 0.001143 \text{ m} + 0.003056 \text{ m}$
= 0.00420 m = 4.20 mm \rightarrow Ans.

2. Sketching or Drawing type of exams:

Draw the shear and moment diagrams for the beam shown in Fig. 6–11a.

Extra notes:

External Evaluator

The contents of this course book outlines the importance of Strength of Materials and its usage for future Machine Design course. The lectures are well organised, timely mannered and the references are up to date which they are sufficient for achievement the objectives of this course. I recommend this course book and it satisfies the requirement of lecturing Strength of Materials.

Dr. Zhwan Dilshad Ibrahim

7/9/2022