

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue

2023-2024

College/ Institute	College of Erbil Technical Engineering			
Department	Department of Information System			
	Engineering			
Module Name	Calculus II			
Module Code	CAL301			
Degree	Technical Diploma Bachelor			
	High Diploma Master PhD			
Semester	3			
Qualification	Master			
Scientific Title	Assistant Lecturer			
ECTS (Credits)	7			
Module type	Prerequisite Core Assist.			
Weekly hours				
Weekly hours (Theory)	(3)hr Class (108) Total hrs Workload			
Weekly hours (Practical)	(2) hr Class (48) Total hrs Workload			
Number of Weeks	16			
Lecturer (Theory)	Swar Ahmed			
E-Mail & Mobile NO.	swar.ahmed@su.edu.krd			
Lecturer (Tutorial)	Ali Hussein Yousif			
E-Mail & Mobile NO.	ali.yousif@epu.edu.iq,			
Websites				

Course Book

	Calculus for Information System Engineering Students:				
	Fundamentals, Real Problems, and Computers insists that				
	mathematics cannot b	be separated from	om chemis	stry,	
	mechanics, electricity	, electronics, aι	utomation	, and other	
	disciplines. It emphasi	zes interdiscipl	inary prob	olems as a way	
	to show the importan	ce of calculus ir	n engineer	ing tasks and	
Course Description	problems. While conc	entrating on ac	tual probl	ems instead	
	of theory, the book us	ses Thomas Cal	culus to he	elp students	
	incorporate lessons in	to their own st	udies. Ass	uming a	
	working familiarity wi	th calculus con	cepts, the	book	
	provides a hands-on c	pportunity for	students t	o increase	
	their calculus and mat	hematics skills	while also	learning	
	about engineering app	olications.			
	1. The student will b	e able to recogniz	e the proble	em type, select	
	an appropriate solution strategy and apply rules and				
	procedures for solving the problem.				
Course objectives	2. The student will b	egin to be able to	apply theor	rems and major	
•	concepts of calculus to solve real-world problems.				
	3. The student will understand and appreciate the applicability of calculus to nature, business, science, etc.				
		, business, science	e, etc.		
	The student is responsible	e for all material a	issigned or o	discussed in	
Student's obligation	effort (as measured by pa	rticipation - askin	e used along	, answering	
	other students' questions	, group work, etc.	.) to resolve	borderline	
De su incid de sur inci	grades.				
Required Learning Materials	1. White board 2. Projector (Data Show)				
Waterials		,			
	Task	Weight	Due	Relevant	
Evaluation		(Marks)	Week	Outcome	
	Paper Review				

		Homework	10	5	
	Assignments	Class Activity			
		Report	32	10	
		Seminar			
		Essay			
		Project			
	Qui	iz	10	12	
	Lat).			
	Mic	lterm Exam	24	13	
	Fin	al Exam	24	16	
	Tot	al			
Specific learning outcome:	 To familiarize the students with the concept of differentiation, and especially the partial derivative. To familiarize the students with complex numbers. To increase the skill set of integration techniques that students know, including double and triple integration. To familiarize the students with the calculating the Area and Volume in the plane and space using double and triple integration. To strengthen the notation and concept of summation (especially adding up an infinite number of terms in a sequence e.g. a limit, a series). To introduce basic ideas of parametric equations, most especially polar coordinates and functions of 				
Course References:	Tho	mas Calculus 14th	edition		
Course topics (Theory)) and	l (Tutorial)		Week	Learning Outcome
Review of derivative and Integra	als			1	Compute definite and indefinite integrals of

		algebraic, trigonometric, inverse trigonometric, exponential, logarithmic, and piece-wise defined functions; Solve problems in a range of mathematical applications using the derivative or the integral;
Complex Number:	2 and 3	1. represent
Complex number, Polar form, Argand diagrams. Euler formula, De Moiver's theorem, Root and power of complex number. Complex function, Cauchy Ryman equation ,the fundamental theorem of algebra		complex numbers algebraically and geometrically; 2. Define and analyze limits and continuity for complex functions as well as consequences of continuity; 3. Apply the concept and consequences of analyticity and the Cauchy- Riemann equations and of results on harmonic and entire functions including the fundamental theorem of algebra
Partial derivatives:	4 and 5	1) Evaluate a
Function with two or more variable, Interior and boundary points (open, closed),		function of several variables at a specific point.

Boundary and unboundary region in the plane. Contours of function		2) Find first
with two variables, function of three variables. Interior and boundary		partial
noints for space regions		derivatives of
Partial derivative Partial derivative of a function of two Variables		multivariable
		functions
functions of more than two variables, Partial Derivatives and Continuity		3) Find first
Second-order Partial Derivatives, the mixed Derivative theorem , Partial		derivatives at a
Derivatives of still higher order ,Minimum and maximum values of two		specific point
variable		4) Find the
		second partial
		derivatives of
		multivariable
		functions.
Double integration, Properties of double integration	6	1. Recognize
		when a
		function of
		two variables
		is integrable
		over a
		rectangular
		region.
		2. Recognize
		and use some
		of the
		properties of
		double
		integrals.
		3. Evaluate a
		double integral
		over a
		rectangular
		region by
		writing it as an
		iterated
		integral.
Areas of a bounded region in the plane,	7	Use a double
		integral to
		calculate the
		area of a
		region, volume
		under a
		surface, or
		average value
		of a function

		over a plane
		region.
Sequences and series, Series of numbers, limit series, infinite series.	8	1. Use the
		definitions of
		convergence as
		they apply to
		sequences,
		series, and
		functions,
		2. Analyze
		sequences and
		series of analytic
		functions and
		types of
		convergence.
The integral test Comparison test	9 and 10	Use the integral
The ration and root tests. Alternative series	5 414 10	test.
		comparison
		test, ration test.
		root test and
		alternative
		series to test a
		series for
Absolute and conditional convergence nower series	11	Illustrate the
Absolute and conditional convergence power series		
		nronerties of
		nower series
Taylor and Maclaurin series. Convergence of Taylor Series	12	1 Describe the
and machadini series, convergence of rayior series.	12	procedure for
		finding a Taylor
		nolynomial of a
		given order for a
		function
		2 Evolain the
		z. Explain the
		significance of
		Taylor's
		theorem with
		remainder
		2 Estimate the
		remainder for a
		Taylor series
		annrovimation
		of a given
		function
Applications of nowar sprice	10	Introduces the
Applications of power series	13	hinomial carias
		for actimating
	<u> </u>	for estimating

		powers and roots and shows how series are sometimes used to approximate the solution of an initial value problem, to evaluate nonelementary integrals, and to evaluate limits that lead to indeterminate forms.
Fourier series, matrices, matrices and application	14	 Appreciate that the Fourier series are the mathematical form for periodic physical phenomena. Learn to use Fourier series to represent periodical physical phenomena in engineering analysis. Learn the required conditions for deriving Fourier series. Appreciate the principle of using Fourier series derived from the function for one period to apply the same Fourier series for other periods.
Triple integration, Properties of triple integration	15	1. Recognize when a function of three

		variables is integrable over a rectangular box. 2. Evaluate a triple integral by expressing it as an iterated integral. 3. Recognize when a function of three variables is integrable over a closed and bounded region.
Volume of a region in the space, Polar Coordinate, Integral in Polar Coordinate	16	The integral ideas of the functions defined including line, surface and volume integrals - both derivation and calculation in rectangular, cylindrical and spherical coordinate systems and understand the proofs of each instance of the fundamental theorem of calculus
Questions Example Design Which of the sequences converge, and which diverge? Find the limit of each convergent sequence.		

$a_n = \left(\frac{n+1}{2n}\right) \left(1 - \frac{1}{n}\right) \qquad a_n = \left(2 - \frac{1}{2^n}\right) \left(3 + \frac{1}{2^n}\right)$	
$a_n = \frac{(-1)^{n+1}}{2n-1} \qquad \qquad a_n = \left(-\frac{1}{2}\right)^n$	
Extra notes:	
External Evaluator I confirm that the syllabus and content of this course book is sufficient and fulfilment for the lesson of "Calculus II" for the 3 rd semester students in the department of "Information System Engineering". The course book covers the requirements of students to have enough knowledge in this field.	
Signature Lec. Farah Sami Khoshaba	