زانكوّى يوّليتهكنيكى هـووليّر ERBIL POLTTECHNIC UNIVERSITY

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2022-2023

College/ Institute	Erbil Polytechnic University
Department	Highway Engineering Technique Department
Module Name	Foundations Analysis \& Design
Module Code	FAD704
Degree	Technical Diploma \square Bachelor \square High Diploma \square Master \square PhD \square
Semester	$7^{\text {th }}$
Qualification	M.Sc. Structural Engineering
Scientific Title	Assistant Lecturer
ECTS (Credits)	6
Module type	Prerequisite \square Core $\sqrt{ }$ Assist. \square
Weekly hours	4 hours
Weekly hours (Theory)	(4) hr Class (108) Total hrs Workload
Weekly hours (Practical)	(None)hr Class (None)Total hrs Workload
Number of Weeks	15
Lecturer (Theory)	Ali J. Nouri Al - Barazanchi
E-Mail \& Mobile NO.	ali.nouri@epu.edu.iq - 07706416969
Lecturer (Practical)	None
E-Mail \& Mobile NO.	
Websites	

Course Book

Course Description	Increase student knowledge and learn the principles and practices for the investigation, design, contracting, and construction of shallow, intermediate, and deep foundations, including remediation of soft, wet, expansive, and frost-prone soils. After attending this course, student shall have a firm grasp of the background and design specifics necessary to compete in this industry, including industry-leading information on the principles and practices of foundation design for buildings, transportation infrastructure, utilities, and industrial facilities. Understand practical emerging technologies including advanced design techniques for pressuremeter-supported foundation design; aggregate piers; auger cast, helical, and micro piles; and design for lateral loads, frost heave, and wet/dry cycles.
Course objectives	- Understand the importance of geotechnical investigation in foundation design - Apply analytical skills to solving problems in foundation design - Understand the basic requirements of international codes for foundation design - Appreciate the interaction between soils and structures - Identify the key geotechnical and structural issues in foundation design - Appreciate the range of foundation types available and their application - Select an appropriate foundation system for a structure - Appreciate the practical problems of design and detailing when designing foundations - Introduce the student to certain case studies
Student's obligation	a. To attend the classes regularly with minimum absence. b. To participate actively in the class discussion and Q\&A session c. Study on daily basis to digest the class material d. To write note off-handouts e. Prepared for sudden Quizzes f. Vet through the references provided by the lecturer and to solve as much as possible of homework and exercises for the subjective materials. g. Prepare the assignment and the seminar as instructed by the lecturer.
Required Learning Materials	Students at this stage with the workload assigned technical for the subject are not required to scatter their attention with bunch of sources. Students are encouraged to thoroughly study the refence given by the lecturer and to vet through available cyber data related to the subject and this shall include the concrete technology worked examples and all those are support with construction site visit for the students to appreciate and monitor closely the application of the theoretical concept in construction.

Evaluation	Task		Weight (Marks)	Due Week	Relevant Learning Outcome
	Paper Review		None for B.SC.		
		Homework	10	Weekly	Application for subject by subject
		Class Activity	2	Weekly	Participate in syllabus learning
		Report	8	$4^{\text {th }} \& 8^{\text {th }}$	Concentrate on certain subject of the module and cover its technical aspects
		Seminar	8	$6^{\text {th }} \& 10^{\text {th }}$	Individual or in group for subjects within the module but out of the syllabus
		Essay			
		Project			
	Quiz		8		
	Lab.				
	Midterm Exam		24	$7^{\text {th }}$	
	Final Exam		40	$14^{\text {th }} \& 15^{\text {th }}$	
	Total		100		
Specific learning outcome:	By the end of the current course, the student shall be able to learn the major activities related to the foundation analysis and design which is the part the makes the backbone for any constructional project. The student would be able to put a scenario for the soil investigations works, assess the subsoil bearing capacity, decide on the proper foundation for the structure, calculate the anticipated settlement, design the foundations (concrete wise for shallow foundations (Spread, Continuous, Strip and Raft) and deep (Piled) foundations, soil treatment for strengthening and retaining structure. The most effect matter the student learn in this course is to decide on safe and most economical foundation system for the subjective projects.				
Course References:	- Foundation Analysis and Design: Joseph E. Bowles - Principles of Foundation Engineering: Braja M. Das - Shallow foundations bearing capacity and settlement: Braja M. Das - Fundamentals of Geotechnical Engineering: Braja M. Das - Foundation Design: Principles and Practices (3rd Edition) 3rd Edition by Donald P. Coduto (Author) \& William A. Kitch				

Course topics (Theory)	Weeks	Learning Outcome
Subsoil Explorations		
1. Introduction	$1^{\text {st }}$	Under this subject the student shall be introduced to the importance of the explorations to identify the soil characteristics which shall be used as the based for the bearing capacity of the subsoil and evaluate the capacity of deep pile
2. Soil Explorations Scenario	$1^{\text {st }}$	
3. Number of boreholes and test pits	$1^{\text {st }}$	
4. Depth of boreholes and type of drillings	$1^{\text {st }}$	
5. Sampling and types of samples	$2^{\text {nd }}$	
6. Laboratory tests over soil samples	$2^{\text {nd }}$	
7. Field tests	$2^{\text {nd }}$	
8. Outcome of tests	$2^{\text {nd }}$	
9. Reporting	$2^{\text {nd }}$	
Bearing Capacity of Shallow Foundations		
1. Introduction	$3^{\text {rd }}$	Student shall learn the evaluation of the bearing capacity for shallow foundations from shear strength parameters and field tests for all types of shallow foundations (Spread, Strip \& Raft)
2. Bearing Capacity equations for Shallow Foundations	$3^{\text {rd }}$	
3. Effect of water table over the bearing capacity	$3{ }^{\text {rd }}$	
4. Factor influencing Bearing Capacity	$3^{\text {rd }}$	
5. Bearing capacity for eccentrically loaded foundations	$4^{\text {th }}$	
6. Layered soil bearing capacity	$4^{\text {th }}$	
7. Bearing capacity form field tests - SPT	$4^{\text {th }}$	
8. Bearing Capacity from field test - PLT	$4^{\text {th }}$	
Settlements of Foundations		
1. Introduction	$5^{\text {th }}$	Students shall learn under the chapter's syllabus the difference between immediate and consolidation settlement and how to calculate each with time - consolidation scenario
2. Types of Settlements	$5^{\text {th }}$	
3. Short Term Settlements (Immediate Settlements)	$5^{\text {th }}$	
4. Consolidation Settlements	$6^{\text {th }}$	
5. Time - Consolidation scenario	$6^{\text {th }}$	
6. Solved examples	$6^{\text {th }}$	
Deep (Pile) Foundations		
1. Introduction	$7^{\text {th }}$	Student shall learn by end of this chapter when he should decide to go for deep foundation and the analysis of the pile's capacity and ultimately the design of the number
2. Types of Piles	$7^{\text {th }}$	
3. Analysis of Piles Capacity	$7^{\text {th }}$	
4. Pile End Bearing Evaluation	$7^{\text {th }}$	
5. Pile Skin Friction Evaluation	$8^{\text {th }}$	
6. Calculate Pile Capacity	$8^{\text {th }}$	

Ministry of Higher Education		Class: $4^{\text {th }}$ year
\& Scientific Research	EPU	Subject: Foundations Design
Erbil Polytechnic University		Time: 3Hrs.
Erbil Technical Engineering College		Date: May 19 ${ }^{\text {th, }} 2022$
Highway Engineering Techniques	2021-2022	
Department	Final Examination-1 ${ }^{\text {st }}$	Code: HE406
Exam is Open Notes Only	Attempt	

Answer all Questions - All questions hold same marks (25 Marks)

Q.1) The results of two plate load tests are tabulated below:

Plate Size (Circular 0.3m)		Plate Size (Circular 0.6m)	
Pressures $(\mathbf{K P a})$	Settlement $(\mathbf{m m})$	Pressures $(\mathbf{K P a})$	Settlement $(\mathbf{m m})$
150	8	50	3
300	14	100	9
450	23	150	17
600	30	200	21
750	40	250	24
900	52	300	30

A square column foundation has to be constructed to carry a total load of 850 KN with tolerable settlement of 30 mm . Determine the size of the foundation using Housel Method.
Q.2) The Administrative building for a Highway's Toll Plaza has a raft foundation with the dimensions of (15 X 25 m) subjected to a net load of (93750 kN) is to be constructed over a soil consists of three basic layers. The top (first) layer is Clay and the second layer is Sand resting over the third layer which is Clay again. Both clay layers are over consolidated with ($\sigma_{o}^{\prime}+\Delta \sigma_{\text {ave }}^{\prime}<\sigma_{c}^{\prime}$). The foundation is at depth of 1.5 m below NGL which is the same depth of the ground water table. As it is required to calculate the Primary Consolidation settlement only, make use of the following data and estimate the total settlement using Stress Influence Tables:
a) Thickness of top first Clay Layer $=4.5 \mathrm{~m}$, b) Thickness of the second Sand Layer is $3 \mathrm{~m} \mathbf{c}$) Thickness of the third clay layer is 9 m d) Sand \& Clays total density $=18 \mathrm{kN} / \mathrm{m}^{3} \&$ saturated density $=20 \mathrm{kN} / \mathrm{m}^{3} \mathbf{e}$) $\mathrm{C}_{\mathrm{s}}=0.040, \mathrm{e}_{\mathrm{o}}=0.72$ for both encountered Clay layers. (Sketch the layers for easy understanding)
Q.3) Design a pile foundation (Number of piles and the dimension of the pile cap) to support a working load of 21000 KN . The pile shall pass through the following layers:

Layer No.	Thickness of Layer, (\mathbf{m})	Type of Soil	\mathbf{C} $(\mathbf{k P a})$	$\boldsymbol{\varnothing}$ $\left({ }^{\circ}\right)$	$\boldsymbol{\gamma}_{\text {tot. }}$ $\left(\mathbf{k N /} / \mathbf{m}^{\mathbf{3}}\right)$
1	5 m	Soft Clay	30	0	18
2	8 m	Medium Sand	0	20	18
3	7 m	Dense Sand	0	30	18
4	10 m	Stiff Clay	100	0	18

Consider the following:

Ministry of Higher Education		Class: $4^{\text {th }}$ year
\& Scientific Research	EPU	Subject: Foundations Design
Erbil Polytechnic University		Time: 3Hrs.
Erbil Technical Engineering College		Date: May 19 ${ }^{\text {th, }} 2022$
Highway Engineering Techniques	2021-2022	
Department	Final Examination - $\mathbf{1}^{\text {st }}$	Code: HE406
Exam is Open Notes Only	Attempt	

1. Piles are Precast Driven Square $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ in size
2. No ground water table were encountered at site in question
3. $\mathrm{FOS}=3.0$
4. Divide \& arrange the piles required in three (3) rows equally
Q.4) Design a strip footing to support a brick wall having a thickness of 300 mm resisting a working dead load of ($\mathrm{DL}=170 \mathrm{KN}$) and working live load of $(\mathrm{LL}=135 \mathrm{KN})$. The allowable bearing capacity $=220 \mathrm{KPa}$, $\mathrm{f}_{\mathrm{c}^{\prime}}=25 \mathrm{MPa} \& \mathrm{f}_{\mathrm{y}}=420 \mathrm{MPa}$ for both the footing and the wall's concrete. FOS for dead load $=1.4$ and 1.7 for the live load. Sketch the footing at the end of the design process. Use $\emptyset 16$ for main bars and $\emptyset 12$ for distribution bars

Assist. Lecturer
ali J. Nawi

Ministry of Higher Education		Class: $4^{\text {th }}$ year
\& Scientific Research	EPU	Subject: Foundations Design
Erbil Polytechnic University		Time: 3Hrs.
Erbil Technical Engineering College		Date: May 19 ${ }^{\text {th, }} 2022$
Highway Engineering Techniques	2021-2022	
Department	Final Examination - $\mathbf{1}^{\text {st }}$	Code: HE406
Exam is Open Notes Only	Attempt	

Solution:

Q.1:

Corresponding pressure to 30 mm of first Plate $=600 \mathrm{KPa}$
Load $=$ A X Pr. $=\pi \times 0.3^{2} \times 0.25 \times 600=42.41 \mathrm{KN}$
Corresponding pressure to 30 mm of second Plate $=300 \mathrm{KPa}$
Load $=\mathrm{AXPr} .=\pi \times 0.6^{2} \times 0.25 \times 300=84.82 \mathrm{KN}$
$Q=A m+P n$
$42.41 \mathrm{kN}=(\pi / 4) \times(0.3)^{2} \times \mathrm{m}+(\pi) \times(0.3) \mathrm{Xn}$
$84.82 \mathrm{kN}=(\pi / 4) \times(0.6)^{2} \mathrm{Xm}+(\pi) \times(0.6) \mathrm{Xn}$
Solving (1) \& (2) yields:
$\mathrm{m}=-0.320073 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{n}=45.0453 \mathrm{kN} / \mathrm{m}$
$Q=A m+P n$
$850=B^{2}$ X - $0.320073+4 B \times 45.0453$
$-0.320073 \mathrm{~B}^{2}+180.1812 \mathrm{~B}-850=0$
Solving for B yields, $B=4.75 \mathrm{~m}$, Say $B=5.0 \mathrm{~m}$

Ministry of Higher Education \& Scientific Research
Erbil Polytechnic University
Erbil Technical Engineering College
Highway Engineering Techniques
Department
Exam is Open Notes Only

2021-2022
Final Examination - $1^{\text {st }}$
Attempt

Class: $4^{\text {th }}$ year
Subject: Foundations Design
Time: 3Hrs.
Date: May 19 ${ }^{\text {th, }} 2022$

Code: HE406

Q.2:

At first layer:
$\sigma_{o}^{\prime}=1.5 \times 18+1.5 \times(20-9.81)=42.285 \mathrm{kPa}$
$q_{\text {net }}=(93750 / 15 \times 25)=250 \mathrm{KPa}$

Z	M	N	$I_{\sigma} \times 4$	$\Delta \sigma^{\prime}=I_{\sigma} \times q_{\text {net }}$
0	∞	∞	1	$1 \times 250=250$
1.5	5	8.333	0.996	$0.996 \times 250=249$
3	2.5	4.1666	0.974	$0.974 \times 250=243.5$

$\Delta \sigma_{\text {ave. }}^{\prime}=\frac{1}{6}\left(\Delta \sigma_{t}^{\prime}+4 \Delta \sigma_{m}^{\prime}+\Delta \sigma_{b}^{\prime}\right)=\frac{1}{6}(250+4 \times 249+243.5)=248.25 \mathrm{kPa}$

$$
\begin{aligned}
& S_{C}=\frac{C_{S} H_{C}}{1+e_{o}} \log \frac{\sigma_{o}^{\prime}+\Delta \sigma_{\text {ave. }}^{\prime}}{\sigma_{o}^{\prime}} \\
& S_{C}=\left(\frac{0.04 \times 3}{1+0.72} \log \frac{42.285+248.25}{42.285}\right) \times 1000
\end{aligned}
$$

Total Settlement $=\mathbf{5 8 . 4 m m}$

At third layer:
$\sigma_{o}^{\prime}=1.5 \times 18+3 \times(20-9.81)+3 \times(20-9.81)+4.5 \times(20-9.81)=133.995 \mathrm{kPa}$
$q_{\text {net }}=(93750 / 15 \times 25)=250 \mathrm{KPa}$

Z	M	N	$I_{\sigma} \times 4$	$\Delta \sigma^{\prime}=I_{\sigma} \times q_{\text {net }}$
6	1.25	2.083	0.861	$0.861 \times 250=215.25$
10.5	0.714	1.190	0.634	$0.634 \times 250=158.5$
15	0.5	0.833	0.449	$0.449 \times 250=112.25$

Ministry of Higher Education		Class: $4^{\text {th }}$ year
\& Scientific Research	EPU	Subject: Foundations Design
Erbil Polytechnic University		Time: 3Hrs.
Erbil Technical Engineering College		Date: May 19 ${ }^{\text {th, }} 2022$
Highway Engineering Techniques	2021-2022	
Department	Final Examination-1 ${ }^{\text {st }}$	Code: HE406
Exam is Open Notes Only	Attempt	

$$
\begin{gathered}
\Delta \sigma_{\text {ave. }}^{\prime}=\frac{1}{6}\left(\Delta \sigma_{t}^{\prime}+4 \Delta \sigma_{m}^{\prime}+\Delta \sigma_{b}^{\prime}\right)=\frac{1}{6}(215.25+4 \times 158.5+112.25)=160.25 \mathrm{kPa} \\
S_{C}=\frac{C_{S} H_{C}}{1+e_{o}} \log \frac{\sigma_{O}^{\prime}+\Delta \sigma_{\text {ave. }}^{\prime}}{\sigma_{o}^{\prime}} \\
S_{C}=\left(\frac{0.04 \times 9}{1+0.72} \log \frac{133.995+160.25}{133.995}\right) \times 1000
\end{gathered}
$$

$$
\text { Total Settlement }=71.50 \mathrm{~mm}
$$

Total Primary Consolidation Settlement $=58.4 \boldsymbol{+} 71.5=129.9 \mathrm{~mm}$

Ministry of Higher Education		Class: $4^{\text {th }}$ year
\& Scientific Research	EPU	Subject: Foundations Design
Erbil Polytechnic University		Time: 3Hrs.
Erbil Technical Engineering College		Date: May 19 ${ }^{\text {th, }} 2022$
Highway Engineering Techniques	2021-2022	
Department	Final Examination - $\mathbf{1}^{\text {st }}$	Code: HE406
Exam is Open Notes Only	Attempt	

Q.3:

400 X 400mm Precast Concrete Driven Pile
$-Q_{\text {b.ult. }}=\left(C N c^{\prime}\right) \times A b=100 \times 9 \times(0.40 \times 0.40)=144 K n$
$-\mathbf{Q}_{\mathbf{f} 1}=\alpha C A_{f}=1 \times 30 \times 0.40 \times 4 \times 5.0=240 \mathrm{kN}$
$-\mathbf{Q}_{\mathbf{t} 2}=\sigma_{\text {ave. }} \times K \times \tan (S) \times A_{f}$
$\sigma_{\text {ave. }}=5 \times 18+4 \times 18=162 \mathrm{kN}$
$Q_{f 2}=162 \times 1.5 \times \tan (0.75 \times 20) \times(0.4 \times 4 \times 8)=833.4 \mathrm{kN}$
$-\mathbf{Q}_{\mathbf{t} 3}=\sigma_{\text {ave. }} \times K \times \tan (S) \times A_{f}$
$\sigma_{\text {ave. }}=5 \times 18+8 \times 18+3.5 \times 18=297 \mathrm{kN}$
$Q_{f 3}=297 \times 2 \times \tan (0.75 \times 30) \times(0.4 \times 4 \times 7)=2755.68 \mathrm{KN}$

- $\mathbf{Q}_{\mathbf{t} 4}=\alpha C A_{f}$
$L / B=10 / 0.4=25$,
Case (1),
$\mathbf{Q}_{\mathbf{f} 4}=\alpha C A_{f}=1.1 \times 100 \times(0.4 \times 4 \times 10)=1760 \mathrm{kN}$
$\Sigma \mathrm{Qf}=240+833.4+2755.68+1760=5589.08 \mathrm{kN}$
Qult. $=144+5589.08=5733.08 \mathrm{kN}$

Qall. - comp. $=5733.08 / 3=1911.03 \mathrm{kN}$
No. of piles required $=21000 / 1911.03=11$, use 18 Piles

No. of piles in a row $=18 / 3=6$
Spacing between Piles $=3 \mathrm{~d}=3 \times 400 \mathrm{~mm}=1200 \mathrm{~mm}$

Ministry of Higher Education \& Scientific Research
Erbil Polytechnic University
Erbil Technical Engineering College
Highway Engineering Techniques
Department
Exam is Open Notes Only

2021-2022
Final Examination - $1^{\text {st }}$
Attempt

Class: $4^{\text {th }}$ year
Subject: Foundations Design Time: 3Hrs.

Date: May 19 ${ }^{\text {th, }} 2022$

Code: HE406

$$
\begin{aligned}
E_{g}=1-\emptyset & {\left[\frac{\left(n^{\prime}-1\right) m+(m-1) n^{\prime}}{90 m n^{\prime}}\right]=1-18.417\left[\frac{(6-1) \times 3+(3-1) \times 6}{90 \times 3 \times 6}\right] } \\
& =0.69305
\end{aligned}
$$

Pile Group Capacity = 18 X 1911 X $0.69305=23840 K N>21000$ KN, Ok

Pile Cap Length $=5 \times 1.2+0.4+0.3=6.7 \mathrm{~m}$
Width of Pile Cap $=2 \times 1.2+0.4+0.3=3.1 \mathrm{~m}$

Check for Block Shear:
$\sigma_{\text {ave. }}=30 \times 18=540 \mathrm{kN}$
$\mathbf{Q}_{\text {b.ult. }}=\left(\mathrm{CNc}^{\prime}+q \mathrm{~N}_{\mathrm{q}^{\prime}}\right) \times \mathrm{Ab}=(100 \times 9+540 \times 1)(6.4+2.8) \times 2=26496 \mathrm{Kn}$
$-\mathbf{Q}_{\mathbf{f} 1}=\alpha C A_{f}=1 \times 30 \times(6.4+2.8) \times 2 \times 5.0=2760 \mathrm{kN}$

- $\mathbf{Q}_{\mathbf{1} 2}=\sigma_{\text {ave } .} \times K \times \tan (S) \times A_{f}$
$\sigma_{a v e .}=5 \times 18+4 \times 18=162 \mathrm{kN}$
$\mathrm{Q}_{\mathrm{f} 2}=162 \times 1.5 \times \tan (20) \times(2 \times(6.4+2.8)) \times 8=13019 \mathrm{kN}$
$-\mathbf{Q}_{\mathrm{f} 3}=\sigma_{\text {ave } .} \times K \times \tan (S) \times A_{f}$
$\sigma_{\text {ave. }}=5 \times 18+8 \times 18+3.5 \times 18=297 \mathrm{kN}$
$Q_{\text {f3 }}=297 \times 2 \times \tan (30) \times(6.4+2.8) \times 2 \times 7=44171 K N$
$-\mathbf{Q}_{\mathbf{f} 4}=\alpha C A_{f}=1.0 \times 100 \times(6.4+2.8) \times 2 \times 10=18400 \mathrm{kN}$
$\Sigma \mathrm{Qf}=2760+13019+44171+18400=78350 \mathrm{kN}$
$Q_{\text {ult. }}=26496+78350=104846 \mathrm{kN}$
$Q_{\text {all. }- \text { comp. }}=104846 / 3=34948 \mathrm{kN}>21000 \mathrm{KN}, \mathrm{OK}$

Ministry of Higher Education
\& Scientific Research
Erbil Polytechnic University
Erbil Technical Engineering College
Highway Engineering Techniques
Department
Exam is Open Notes Only

2021-2022
Final Examination - $1^{\text {st }}$
Attempt

Class: $4^{\text {th }}$ year
Subject: Foundations Design
Time: 3Hrs.
Date: May $19^{\text {th, }} 2022$

Code: HE406

Q.4:

$A_{f}=(D L+L L) / Q_{\text {all. }}=(170+135) / 220=1.386 \mathrm{~m}^{2}$
$B=1.5 m$
$\mathrm{P}_{\mathrm{u}}=1.4 \mathrm{DL}+1.7 \mathrm{LL}=1.4 \times 170+1.7 \times 135=467.5 \mathrm{KN} / \mathrm{m}$
$\mathrm{Q}_{\mathrm{u}}=\mathrm{P}_{\mathrm{u}} / \mathrm{A}_{\mathrm{f}}=467.5 / 1.5=311.67 \mathrm{KPa} / \mathrm{m}$
$\mathrm{Vc}=\frac{\emptyset}{6} \sqrt{f_{c}^{\prime \prime}}=(0.75 / 6) \times\left(25^{0.5}\right) \times 1000=625 \mathrm{KN} / \mathrm{m}^{2}$
$\left(\frac{B-a}{2}-d\right) \times L \times q_{u}=L X d X V_{c}$
$(((1.5-0.3) / 2)-d) \times 1 \times 311.67=1 \times d \times 625$
$187.002-311.67 d=625 d$
$d=187.002 /(311.67+625), d=0.199 m=199 m m$
$M_{u}=\left(q_{u} X I^{2}\right) / 2, I=(B / 2-b / 4)=(1.5 / 2)-(0.3 / 4)=0.675 m$
$M_{u}=\left(311.67 \times 0.675^{2} / 2\right)=71 \mathrm{kN} . \mathrm{m}$
$R_{u}=M_{u} \times 10^{6} /\left(\not \mathrm{Bd}^{2}\right)=71 \times 1000000 /\left(0.9 \times 1000 \times 199^{2}\right)=1.992$
$m=f_{y} / 0.85 f_{c^{\prime}}=420 /(0.85 \times 25)=19.76$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R_{u}}{f_{y}}}\right)=\frac{1}{19.76}\left(1-\sqrt{1-\frac{2 \times 19.76 \times 1.992}{420}}\right)=0.0049887>\rho_{\text {min }}=0.002$
$\rho_{\max .}=0.75 \times\left(\frac{0.85 \times \beta_{1} \times f_{c}^{\prime}}{f_{y}} \times \frac{600}{600+f_{y}}\right)=0.75 \times\left(\frac{0.85 \times 0.85 \times 25}{420} \times \frac{600}{600+420}\right)=0.0253$
$\rho_{\max .}>\rho>\rho$ min.
$A_{s-\text { tension }}=0.0049887 \times 1000 \times 199=992 \mathrm{~mm}^{2} / \mathrm{m}$

Area of steel bar $\emptyset 16=201 \mathrm{~mm}^{2}$

Ministry of Higher Education		Class: $4^{\text {th }}$ year
\& Scientific Research	EPU	Subject: Foundations Design
Erbil Polytechnic University		Time: 3Hrs.
Erbil Technical Engineering College		Date: May 19 ${ }^{\text {th, }} 2022$
Highway Engineering Techniques	2021-2022	
Department	Final Examination-1 ${ }^{\text {st }}$	Code: HE406
Exam is Open Notes Only	Attempt	

No. of bars $/ \mathrm{m}=992 / 201=4.93$ bras, spacing $=1000 / 5=200 \mathrm{~mm}$ Use Ø16@200mmC/C
$\rho_{\text {sec. }}=0.3 \rho=0.3 \times 0.0049887=0.0015<\rho_{\text {min. }}$, then use $\rho_{\text {min. }}=0.002$
$A_{s-\text { secondary }}=0.002 \times 1500 \times 199=597 \mathrm{~mm}^{2} / \mathrm{m}$

Area of steel bar $\emptyset 12=113 \mathrm{~mm}^{2}$

No. of bars within the width of the strip $=597 / 113=6$ bras, spacing $=1500 / 6=250 \mathrm{~mm}$

Use Ø12@250mmC/C

Total Thickness of the strip footing $=199+(12+16) / 2+75=288 \mathrm{~mm}$, say 300 mm

To calculate the development length:

1. $L_{d}=0.02 \times A_{b} X\left(f_{y} /\left(f_{c^{\prime}}\right)^{0.5}\right)=0.02 \times 201 \times(420 / 5)=337.7 \mathrm{~mm}$, or
2. $L_{d}=0.058 \times d_{b} \times f_{y}=0.058 \times 16 \times 420=390 \mathrm{~mm}$, or
3. $L_{d}=300 \mathrm{~mm}$

Then $\mathrm{L}_{\mathrm{d}}=390 \mathrm{~mm}$

Available $L_{d}=((1500-300) / 2)-75=525 \mathrm{~mm}>390 \mathrm{~mm}, \mathrm{OK}$

