

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2022-2023

College/ Institute	Erhil Polytechnic	University		
	Erbil Polytechnic University			
Department	Highway Engineering Technique			
	Department			
Module Name	Reinforced Concrete Design – II			
Module Code	RCD601			
Degree	Technical Diploma ☐ Bachelor ✓			
	High Diploma	Master PhD PhD		
Semester	6 th			
Qualification	M.Sc. Structural Engineering			
Scientific Title	Assistant Lecturer			
ECTS (Credits)	6			
Module type	Prerequisite	Core ✓ Assist.		
Weekly hours	4 hours			
Weekly hours (Theory)	(4) hr Class	(108) Total hrs Workload		
Weekly hours (Practical)	(None)hr Class	(None)Total hrs Workload		
Number of Weeks	15			
Lecturer (Theory)	Ali J. Nouri Al – Barazanchi			
E-Mail & Mobile NO.	<u>ali.nouri@epu.edu.iq</u> – 07706416969			
Lecturer (Practical)	None			
E-Mail & Mobile NO.				
Websites				

Course Book

Course Description	Increase student knowledge and learn the principles and practices for the analyses, design, contracting, and construction of structural concrete elements. After attending this course, student shall have a firm grasp of the background and design specifics necessary to compete in this industry, including industry-leading information on the principles and practices of structural concrete members design for buildings, infrastructure, utilities, and industrial facilities. Understand practical emerging technologies including advanced design techniques for specific structural elements.
Course objectives	 Understand the importance of basic principles of reinforced concrete design for certain structural elements. Apply analytical skills to solving problems in reinforced concrete design. Understand the basic requirements of international codes for reinforced concrete design. Appreciate the interaction between the structural analysis, strength of material, mechanics of structural and the reinforced concrete design. Identify the key mechanical and structural issues in reinforced concrete design. Appreciate the range of structural elements types available and their application. Select an appropriate reinforced concrete system for a structure Appreciate the practical problems of design and detailing for reinforced concrete structures, buildings and facilities. Introduce the student to certain case studies
Student's obligation	a. To attend the classes regularly with minimum absence. b. To participate actively in the class discussion and Q&A session. c. Study on daily basis to digest the class material d. To write note off-handouts e. Prepared for sudden Quizzes f. Vet through the references provided by the lecturer and to solve as much as possible of homework and exercises for the subjective materials. g. Prepare the assignment and the seminar as instructed by the lecture. h. Solve and submit the home works on time. i. Prepare and submit the requested scientific reports on time to the standards set by the lecturer. j. Prepare and present seminars in the number required for the titled assigned by the lecturer. k. Prepare for and attend the mid – terms exam l. Prepare for and attend the final – exam

Required Learning Materials

Students at this stage with the workload assigned technical for the subject are not required to scatter their attention with bunch of sources. Students are encouraged to thoroughly study the refence given by the lecturer and to vet through available cyber data related to the subject and this shall include the concrete technology worked examples and all those are support with construction site visit for the students to appreciate and monitor closely the application of the theoretical concept in construction.

	Task		Weight (Marks)	Due Week	Relevant Learning Outcome
	Paper Review		None for B.SC.		
Qui Lab Mid Fina	Assignments	Homework	10	Weekly	Application for subject by subject
		Class Activity	2	Weekly	Participate in syllabus learning
		Report	8	4 th & 8 th	Concentrate on certain subject of the module and cover its technical aspects
		Seminar	8	6 th & 10 th	Individual or in group for subjects within the module but out of the syllabus
		Essay			
		Project			
	Quiz		8		
	Lab.	Lab.			
	Midterr	Midterm Exam		7 th	
	Final Exam		40	14 th & 15 th	
	Total		100		

- 1- The analysis and design of two way slabs
- 2- The analysis and design of various R.C columns design
- 3- The analysis and design of stair case of various types
- 4- Get familiar with various types of retaining structures, their analysis and design
- 5- Attend construction sites for the elements above

Specific learning outcome:

- 6- Interaction between various RC elements through the courses of RC I, RC II and Prestress Concrete in Reinforced Concrete Bridge Design Module on 7th semester 7 Vet through the available topics related to the course syllabus published up to
- 7 Vet through the available topics related to the course syllabus published up to date.
- 8 As the module time line is relatively short, the student shall be able to study on his/her own further subjects in RC module
- 9 introduce the recipient to available software to analysis and design the RC structural elements individually or in whole.

Course References:

- 1 318-19: Building Code Requirements for Structural Concrete and Commentary.
- 2 Reinforced Concrete: Mechanics and Design, by James K. Wight | Jun 22, 2021.
- 3 Reinforced Concrete Buildings: Behaviour and Design by Ahmad A. Hamid | Jan 19, 2021.
- 4 Design of Concrete Structures by David Darwin and Charles Dolan | Jul 6, 2020.
- 5 Structural Concrete: Theory and Design by M. Nadim Hassoun and Akthem Al-Manaseer \mid Mar 10, 2020.
- 6 Reinforced Concrete Design by Abi O. Aghayere and Jason Vigil | Mar 16, 2018.

Course topics (Theory)	Weeks	Learning Outcome	
Design of Two-Way Slabs			
1. Introduction	1 st	Under this subject the	
2. Types of Two – Way Slabs	1 st	student shall be introduced to the slabs as structural elements in various structures. The student shall learn the analysis and design of the RC slabs through various	
3. Design Concepts	1 st		
4. Column & Middle Strips	1 st		
5. Minimum Slab Thickness to Control Deflection	2 nd		
6. Shear Strength of Slabs	2 nd		
7. Analysis of Two – Way Slabs by the Direct Design Method	2 nd	up to date methods and	
8. Design Moments in Columns	2 nd	shall be attending various	
9. Solved Examples	3 rd & 4 th	home works and solved examples enabling the	
10. Transfer of Unbalanced Moments to Columns	4 th	student to design and	
11. Equivalent Frame Method	Δ ¹¹¹	detail such elements individually or in bunch.	
Reinforced Concrete Columns			
1. Introduction to Axially Loaded Columns	5 th	Under this subject, the student shall be introduced to almost all types of columns	
2. Types of Columns	5 th		
3. ACI Code Limitations	5 th		
4. Spiral Reinforcement	5 th	including the short and	
5. Design Equations	6 th	long columns covering the	
6. Solved Examples	6 th	slenderness art of it and those subjected to pure	
7. Introduction to Columns in Compression & Bending	8 th	axial load or the eccentric	
8. Design Assumptions	8 th	loaded columns that subject them to uniaxial and/or biaxial moments. The students by end of the subject shall be able to design various types of square, rectangular and circular columns.	
9. Load – Moment Interaction Diagrams	8 th		
10. Analysis and Design of Columns using Charts	8 th		
11. Design of Columns under Eccentric Loading	9 th		
12. Square and Rectangular Columns under Biaxial Bending	9 th		
13. Solve Examples	9 th		

Retaining Walls			
Introduction & Types of Retaining Walls	10 th	Under this subject,	
2. Forces on Retaining Walls	10 th	students shall be introduced to the earth retaining structures which	
3. Active & Passive Soil Pressure	10 th		
4. Friction of the Retaining Walls Base	10 th	they are part of the	
5. Stability against Overturning	10 th	highway and building	
6. Proportions of Retaining Walls	10 th	constructions. They shall be able to recognize	
7. Design Requirements & Equations	11 th	typical types of the	
8. Drainage	11 th	retaining walls and the	
9. Solved Examples for Cantilever Retaining Walls	11 th	forced imposed to such structures and ultimately, to analysis, design and detailing of the cantilever retaining wall which is the common type in application.	
Staircases			
1. Introduction	12 th	Under this subject, the student shall be able to analyse and design simply supported RC Staircases	
2. Types of Stairs, their Analyses & Design	12 th & 13 th		
3. Solved Examples	13 th		

Questions Example Design

First year teaching, no questions example yet

Extra notes:

None so far

External Evaluator