

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2022-2023

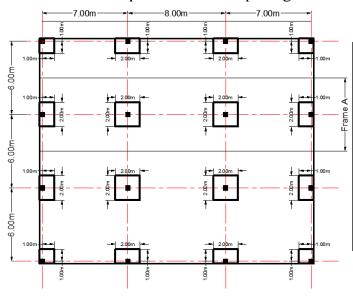
College/ Institute	College of Erbil Technical Engineering							
Department	Civil Engineering							
Module Name	Reinforced Concrete Structures							
Module Code	RCS702							
Degree	Technical Diploma Bachler							
	High Diploma Master PhD							
Semester	Fifth Semester							
Qualification	BSc Civil Engineering Techniques/ Erbil							
Scientific Title	Assistant Professor							
ECTS (Credits)	6							
Module type	Prerequisite Core Assist.							
Weekly hours								
Weekly hours (Theory)	(4) hr Class (162) Total hrs Workload							
Weekly hours (Practical)	()hr Class ()Total hrs Workload							
Number of Weeks	12							
Lecturer (Theory)	Dr. Bahman Omar Taha, Alend Wirya							
	Abdulrazaq							
E-Mail & Mobile NO.	Email: bahman.taha@epu.edu.iq,							
	alend.abdulrazaq@epu.edu.iq							
Lacturar (Practical)	Mobile: +9647504499146, +9647504494289							
Lecturer (Practical) E-Mail & Mobile NO.								
Websites								

Course Book

Course Description	Emphasis is placed on understanding structural behaviour and the background to the design methods in ACI and other codes where appropriate. By the end of this module students will have a good understanding of the design and behaviour of reinforced concrete structures.
Course objectives	The main aim and purpose behind the study of reinforced concrete structures is to give students a good understanding of the design and behaviour of reinforced concrete structures at the ultimate limit state. We will look at the design of framed building structures in some detail with particular emphasis on the design of torsion of beams, two-way slabs, shear walls, reinforced concrete tanks, Prestressed concrete and reinforced concrete bridges.
Student's obligation	The students are required to: -Attend all the lectures and participate in the classwork and assignments. -Participate in the exam.
Specific learning outcome:	 On successful completion of this course, each student is able to: a) Design of reinforced concrete Beam for Torsion b) Design and check for serviceability (crack and deflection) conditions and for ultimate limit state conditions in accordance with relevant reinforced concrete design and building standards. c) Design of reinforced concrete Two-way Slabs d) Understand how structural components are assembled into complete structural systems of multi-storey buildings, including understanding the load paths and interactions between components e) Apply concepts for reinforced concrete and prestressed concrete design
Required Learning Materials	Different pedagogical methods are used in this course; for example, project, report, and homework, easy. Student will receive the required handouts such as the references.

		Task	Weight (Marks)	Due Week	Relevant Learning Outcome
	P	aper Review			
		Homework	10%		
	As	Class Activity	2%		
	sigi	Report			All
	Assignments Quiz	Seminar	8%		
Evaluation		Essay			
		Project	8%		
			8%		
	Lab.				
	Midterm Exam		24%		
	Final Exam		40%		
	Total		100%		
	4	A CL 24 ON A 40" D I. I.			

Course References:


- 1- ACI 318M-19" Building code requirements for structural concrete" "Design of Concrete Structure "13th edition, Arthur H. Nilson, David Darwin and Charles W. Dolan 2004.
- 2- "Reinforced Concrete Mechanics and Design" third edition, James G. Macgregor 1997.
- 3- "Reinforced Concrete Design of tall Buildings", Bungale S. Taranath, 2010
- 4- "Reinforced Concrete a Fundamental approach" fifth edition, Edward G. Nawy 2005.

Course topics (Theory)	Week	Learning Outcome	
Introduction Torsion in beams	1-2	a)	
Beams Defection Control Beams Crack Control	3	b)	
Method of Slab Analysis & Design. Direct Design Method. Equivalent Design Method.	4-7	c)	
Method of Slab Analysis & Design. Equivalent Design Method.	8-9	c)	
Multi-storey Buildings	10	d)	
Pre-stress Concrete.	11-12	e)	
Practical Topics	Week	Learning Outcome	
N/A			

Questions Example Design

Q1/ A two-way slab floor system as shown below. It is divided into 9 panels. Cylindrical Concrete compressive strength, fc`=25MPa and steel yield strength, fy=420MPa. Additional dead load=1.0 kN/m², service live load is to be taken 3.0kN/m², story height is 3.70m. The preliminary sizes are as follows Slab thickness is 250mm, Slab thickness is 400mm at drops columns sizes are 400x400 mm. Determine

- 1- Minimum Slab Thickness according to ACI Code
- 2- Using Equivalent Frame Method Find column strip & Middle Strip (+ve and -ve) moments for Frame A
- 3- Find the Required steel and spacing for the maximum +ve & -ve moments of Frame A

Take

- -Clear Cover for slab=20mm
- φ 12mm steel reinforcement used for slab reinforcement.
- -B_t=0 (for determining column strip exterior negative factored moments).

Solution

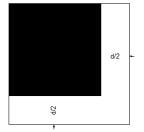
Solution

1-

Maximum Span is 8.0m Ln=8.0*0.4=7.60m

1-Exterior Panels Ln/30 = 7.6*1000/30=228mm

2-Interior Panels Ln/332=7.6*1000/33=230mm


2-

Wu=1.2d.l+1.6l.l=

Wu=1.2(0.275*24+1.0)1.6*3.0=13.92kN/m²

d=275-20-6=249mm

bo=2(400+249/2) =1049mm

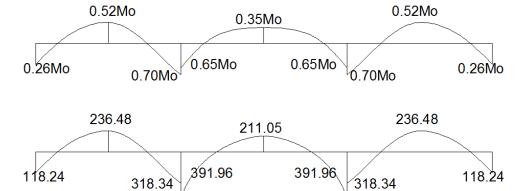
a)
$$\emptyset Vc = \left[1 + \frac{2}{\beta c}\right] \frac{\emptyset}{6} \sqrt{f^*c} * b_{o*}d$$

$$\emptyset Vc = \left[1 + \frac{2}{1}\right] \frac{0.75}{6} \sqrt{25} * 1049 * 249 = 489.75kN$$

b)
$$\emptyset Vc = \left[\frac{\alpha*d}{b_o} + 2\right] \frac{\emptyset}{12} \sqrt{f^*c} * b_{o*}d$$

$$\emptyset Vc = \left[\frac{20 * 249}{1049} + 2\right] \frac{0.75}{12} \sqrt{25} * 1049 * 249 = 550.76kN$$

c)
$$\emptyset Vc = \frac{\emptyset}{3} \sqrt{f^*c} * b_{o*}d$$


$$\emptyset Vc = \frac{0.75}{3}\sqrt{25} * 1049 * 249 = 326.50kN$$

Applied $Vu=13.92*(3.5*3-0.5245*0.5245) = 142.33kN < \phi Vc ok$

3.

Mo1=1/8*6*13.92*6.6²=454.77 kN.m

Mo1=1/8*6*13.92*7.6²=603.01 kN.m

For Span 1 L2/L1=6/7=0.86m

For Span 2 L2/L1=6/8=0.75m

Ext Neg----100%

Inter Neg----95%

+Ve moment-----60%

	Exter Span			Inter Span		
	ExtVe	+Ve	-Ve	Neg	+Ve	Ve
Total Moment	118.24	236.48	318.34	39.96	211.05	391.96

Col Str.	118.24	141.89	238.76	293.97	126.63	293.97
Middle Str.	0	94.59	79.59	97.99	94.42	97.99

4.

$$C = \left(1 - 0.63 \frac{x}{y}\right) \frac{x^3 y}{3} = \left(1 - 0.63 \frac{275}{400}\right) \frac{275^3 * 400}{3} = 1571897135 mm^4$$

$$Ec = 4700\sqrt{f^*c} = 4700\sqrt{25} = 23500MPa$$

$$Kt = \sum \frac{9E_{CS}C}{l_{2}\left(1 - \frac{C_{2}}{l_{2}}\right)^{3}}$$

Kt =
$$\sum \frac{9*23500*1571897135}{6000(1-400/6000)^3} = 6.82*10^4 \text{ kN.m}$$

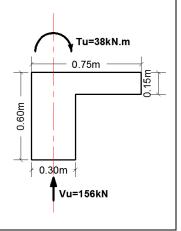
Ic=400*4003/12=21333333333mm4

Kc=4EI/L=4*23500*21333333333 (3.7*1000) =5.42*104 kN.m

$$Kec = \frac{\sum Kc}{1 + \frac{\sum Kc}{Kt}}$$

$$Kec = \frac{2*5.42*10^4}{1 + \frac{2*5.42*10^4}{2*6.82*10^4}} = 6.04*10^4 \text{ kN.m}$$

Q2/ Design the **vertical** steel reinforcements for the beams shown below taking the effect of **Torsion** and **Shea**r loads having f c = 28 MPa and fy = 414MPa the beams


(30 marks)

Take

-Clear Cover for beam=40mm

- ϕ 10mm steel reinforcement used for vertical steel reinforcement.

-d=540mm

Solution

Tu<0.083 Φ V f'c (A²cp / Pcp)

ACP=750*150+450*300=247500 mm²

PCP=750+600+300+450+450+150=2700mm

 $0.083*0.75\sqrt{28} (247500^2 / 2700) = 7.47*10^6 \text{ N.mm} = 7.47\text{kN.m}$

Tu=38< 7.47 Need Torsion Design

=Check equation %

X₀=300-2*40*10=210mm

Y₀=600-2*40*10=510mm

Aoh=210*510=107100

 $Ph=2(X_o+Y_o)=2(210+510)=1440mm$

$$Vc = \frac{1}{6}\sqrt{f^{\,}c} * bw * d$$

$$Vc = \frac{1}{6}\sqrt{28} * 300 * 540 = 142.87kN$$

$$\sqrt{\left[\frac{Vu}{bw\;d}\right]^2 + \left[\frac{Tu\;ph}{1.7\;Aoh^2}\right]^2} \leq \emptyset\left(\frac{Vc}{bw\;d} + 0.66\sqrt{f^*c}\right)$$

$$\sqrt{\left(\frac{156 * 10^3}{300 * 540}\right)^2 + \left(\frac{38 * 10^6 * 1440}{1.7 * 107100^2}\right)^2} \le 0.75\left(\frac{142.87 * 10^3}{300 * 540} + 0.66 * \sqrt{28}\right)$$

2.97 < 3.28 O.K.

 $Vu > \phi Vc$

156 > 0.75*142.87=107.15 Need stirrups for shear

$$Vs = \frac{Vu}{\emptyset} - Vc$$

$$Vs = \frac{156}{0.75} - 142.87 = 65.13kN$$

$$Av = \frac{Vs * S}{fy * d}$$

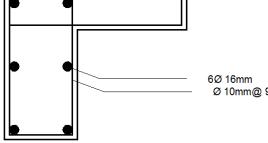
$$Av = \frac{65.13 * 10^3 * S}{414 * 540} = 0.29S$$

$$Tn = \frac{2 * A_o * At * fyv}{S} cot\emptyset$$

 $A_o = 0.85 * Aoh = 0.85 * 107100 = 91035 mm^2$

$$\frac{38 * 10^6}{0.75} = \frac{2 * 91035 * At * 414}{S}$$

At=0.67*S


Av+2*At=0.29S+2*0.67S=1.63S
$$> \frac{1}{3} \frac{bw*S}{fy} = \frac{1}{3} \frac{300*S}{414} = 0.24S$$

For φ 10mm 2A=2*78.5=157mm²

S=96.3mm

S_{max}=ph/8=1440/8=180mm

Use φ 10mm @95mm c/c

$$Al = \frac{At}{s} Ph \frac{fyt}{fyl} cot \emptyset^2 = 0.67 * 1440 = 964.8 \ mm^2$$

$$Almin = 0.42\sqrt{f^{\, c}} \frac{ACP}{fy} - \frac{At}{S} Ph \frac{fyt}{fyl}$$

$$\frac{At}{s} \ge 0.175 \frac{bw}{fyt}$$

$$\frac{At}{s} = 0.67 \ge 0.175 \frac{300}{414} = 0.13$$

$$Almin = 0.42\sqrt{28} \frac{247500}{414} - 0.67 * 1440 * 1 = 363.83mm^{2}$$

Extra notes: * ECTS Calculation									
Erbil Technical Engineering College									
Program: Bache	elor (2	240 ECTS)							
Department na	me:	Tech	nical Civil Engineering De	ical Civil Engineering Dept.					
#		15-20							
(Min. 12 we	eks a	active lecturi	ng (Including Mid Term e	xams with	no stopping of	lectur	es) + 3 weeks	Final & F	Re-sit Exams
Lecturer Nam	e:	Asst. Prof.	Dr. Bahman Omar Taha				1.0 ECTS =	27	working hours
Module Nam	e:	Reinforce	d Concrete Structures				X	Υ	Z
Module Code	2:		RCS702				4	0	0
			ECTS Work	kload Calcu	ulation Form				
Activity	S		Description	Activity	No.	T.	F. Range	Time	Workload
						Min	Max		
	1	Theory	In class	f	12			4	48
	2	THEOTY	Online	f	0			4	0
	3	Prep	aration: (1-2)* X)	h	12	4	8	6	72
Course	4		Practical	f	0			0	0
	5	Preparation: (1-1.5)* Y		h	0	0	0	2.5	0
	6	Tutorial		f	0	1	1	0	0
	7	Preparation (0.5-1.5) * Z)		h	0	0	0	1.5	0
Site Visists	8	Scie	ntific/Field Trips	f	0	2	6	4	0
and Lab Experiments	9	Prac	Practical/Lab Reports		0	1	2	1.5	0
	10	Homework		h	2	1	4	4	8
	11	Report		h		1	4		0
Assignment	12	Seminar		h	1	2	10	10	10
Assignment	13	Paper		h		4	15		0
	14	Essay		h		1	6		0
	15	Project/Poster		h	1	4	15	4	4
	16		Quiz	h	2	1	2	1	2
	17		Theory	f	1			1	1
	18	─ Mid Term	Preparation: (1.5-3)*X	h	1	6	12	6	6
	19		Practical	f	0			1	0
Assessment	20		Preparation: (1-2)*Y	h	0	0	0	3	0
	21		Theory	f	1			2	2
	22	22 Final	Preparation: (3-5)*X	h	1	12	20	12	12
	23	illial	Practical	f	0			1	0
	24		Preparation: (2-4)*Y	h	0	0	0	5	0
Face to face hours (f)/12 week		4.25	Face to face hours (f)			51			
Home hours (h)/15 week		7.60	Home hours (h)				114		
Total hour	rs/15	week	11.00	Total hours				165	
			ECTS (Total ho	ours/ 27)					6.111

External Evaluator

External Evaluator

The course catalogue satisfies and adequate for the module Reinforced **Concrete Structures RCS702.**

Prof. Dr. Mereen Hassan Fahmi Rasheed