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A B S T R A C T   

The complex design of a dew point evaporative cooler (DPEC) is the largest impediment to the globalization of 
such a high-performance system. Therefore, in this paper, we introduce a new design for the DPEC which 
eliminates the complexity barrier and significantly improves the system’s performance. The new design consists 
of one shell and a bank of tubes. The single shell works as a working channel, while the tubes work as primary 
channels. A solid mathematical model has been developed which can predict the system’s performance with high 
accuracy, as it was validated against three experimental studies. Throughout the analysis, the energy and thermal 
performances of the current model has been compared to the conventional DPEC with flat plate design for two 
air-water flow configurations, namely, parallel and counter air-water flow configurations. It was found that, 
under a wide range of operational and geometrical conditions, the new cooler consistently outperformed the flat 
plate type cooler by producing colder air by about 3.1 ◦C and improving energy efficiency by about 12.2 %. 
Meanwhile, the parallel air-water flow configuration produced much colder water than the counter configura-
tion, accounting for 15.76 ◦C (140 %) colder.   

1. Introduction 

Over the years, evaporative cooling, in general, has been considered 
as one of the most consistent and reliable sources of cooling in buildings 
and industries owing to its simplicity, low-cost, and ease of access. Be-
sides, compared to space cooling refrigeration systems (SCRSs), it lacks 
hydrofluorocarbon coolants that have been banned over the past de-
cades. Such working fluids must be pressurized and de-pressurized to 
transport heat from one zone to another and produce cooling. This 
process consumes a high amount of electrical energy that eventually 
contributes to the global warming phenomenon through the emission of 
greenhouse gases [1,2]. In 2022 alone, the SCRSs approximately 
accounted for 17 % of overall electricity consumption and 8 % of overall 
greenhouse gas emissions worldwide [3]. In consequence, the SCRSs 
result in high electricity bills, high initial and maintenance costs, and 
severe environmental damage [4,5]. Therefore, the environmentally 
friendly characteristics of the evaporative coolers led many researchers 
to study such a system and attempt to improve its performance through 

many approaches [6–11]. The limitation of high humidity content and 
wet bulb temperature of product air are two of the common impedi-
ments of the direct evaporative coolers [12,13]. However, in 2003, a 
group of researchers [14] was able to overcome these impediments and 
boost the system’s performance by introducing a new heat and mass 
exchanger (HMX) with novel design from which the air was cooled to-
ward the inlet air’s dew point temperature, yet keeping the humidity 
ratio unchanged. This system was named the Maisotsenko cycle 
(M-cycle). It distinguished from direct evaporative cooler by precooling 
the air within the cooler inside the primary channel before diverting to 
the working channel. 

Since the first innovation, the performance of such a system has been 
continuously improving through the endeavors of many researchers, 
and it came with other names such as dew point and regenerative 
evaporative coolers. Such studies include experimental-based, compu-
tational-based, and combined studies, each contemplating a different 
aspect, i.e., geometrical investigation, air-flow configurations, mathe-
matical approaches, weather assessment, and structural material. Xu 
et al. [15] employed a corrugated shape plate as a new design for the 
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