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Abstract
Objectives: Pinostrobin (5-hydroxy-7-methoxyflavanone; PN) is a natural active ingredient with numerous biological 
activities extensively utilized in tumour chemotherapy. The present study investigates the chemo-preventive potentials of 
PN on azoxymethane-mediated colonic aberrant crypt foci in rats.
Methods: Sprague Dawley rats clustered into five groups, normal control (A) and cancer controls were subcutaneously injected 
with normal saline and 15 mg/kg azoxymethane, respectively, and nourished on 10% tween 20 and fed on 10% tween 20; reference 
control (C), injected with 15 mg/kg azoxymethane and injected (intraperitoneal) with 35 mg/kg 5-fluorouracil (5-FU); D and E 
rat groups received a subcutaneous injection of 15 mg/kg azoxymethane and nourished on 30 and 60 mg/kg of PN, respectively.
Results: The acute toxicity trial showed a lack of any abnormal signs or mortality in rats ingested with 250 and 500 mg/
kg of PN. The gross morphology of colon tissues revealed significantly lower total colonic aberrant crypt foci incidence in 
PN-treated rats than that of cancer controls. Histological examination of colon tissues showed increased aberrant crypt foci 
availability with bizarrely elongated nuclei, stratified cells and higher depletion of the submucosal glands in cancer controls. 
PN treatment caused positive modulation of apoptotic (Bax and Bcl-2) proteins and inflammatory cytokines (TNF-α, IL-6 
and IL-10). Moreover, rats fed on PN had significantly higher antioxidants (superoxide dismutase) and lower malondialdehyde 
concentrations in their colon tissue homogenates.
Conclusion: The chemoprotective efficiency of PN against azoxymethane-induced aberrant crypt foci is shown by lower 
aberrant crypt foci values and higher aberrant crypt foci inhibition percentage, possibly through augmentation of genes 
responsible for apoptotic cascade and inflammations originating from azoxymethane oxidative stress insults.
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Background

Colorectal cancer (CRC) is a deleterious malignancy recog-
nised as the third leading cause of mortality-related cancer 
worldwide. It is the second leading cause of mortality-related 
cancer when statistics were combined from both genders.1,2 
The risk factor for acquiring colorectal cancer is slightly 
higher in females (1–26) than in males (1–23) during their 
lifetime. However, this range changes based on colorectal 
risk factors such as stress, alcohol, malnutrition, smoking 
and obesity.3 The pharmaceutical industry has provided 
numerous drug choices for colorectal cancer. The anticancer 
chemical synthetics can exhibit different side effects (hair 
loss, nephropathy, digestive problems and sexual disability) 
in short and long periods.4 Therefore, researchers are exten-
sively exploring alternative natural medicine (chemoprotec-
tive) with lower side effects to lower the mortality and 
morbidity rates associated with colorectal cancer.5,6 For that, 
azoxymethane, a well-documented carcinogenic chemical, is 
commonly relied on to initiate aberrant crypt foci in rats, 
which resembles the same characteristics found in humans.7

Oxidative stress is a series of biological processes involved 
in the pathogenesis of colorectal cancer. Oxidative stress can 
occur in the colon mucosa and destroys those cells either by 
oxidation of membrane lipids and DNA damage (attach 
nucleus) or denaturation of cellular proteins and carbohy-
drates.8,9 Moreover, the by-product of reactive oxygen spe-
cies (ROS) causes further colonic damage by alleviating 
intestinal defence lines, genetic predisposition and dysbiosis 
(modulation of the intestinal microbiota), and up-regulation 
of inflammatory cytokines, leading to the initiation of colo-
rectal cancer.10 Inflammation is a series of pathological pro-
cesses that could be initiated as a result of prolonged oxidative 
stress in colon mucosa as a result of stimulation of the NF-κB 
mechanism, increased expression of cyclooxygenase-2 
(COX-2) and production of NO by inducible nitric oxide syn-
thase (iNOS).11 Moreover, inflammation may also result from 
the pathogenic entrance that leads to up-regulation of the pro-
inflammatory cytokine, tumour necrosis factor-alpha (TNF-
α), interleukin-6, IL-8, chemokines CCL2, and CXCL8 while 
reducing anti-inflammatory cytokines (IL-10).12 Chronic 
inflammation (CI), a long-term health defect, has been cor-
related with many of lifelong series diseases namely, irritable 
bowel disease and colorectal cancer. Irritable bowel disease 
(IBD) is an inflammatory-related gastrointestinal disease rec-
ognized by disruption of intestinal epithelium (intestinal bar-
rier), which usually prevents penetrations of pathogens and 
toxic compounds and permits passage of only certain micro-
molecules (nutrients and electrolytes) through different ion 
and protein channels. Chronic inflammation can disrupt the 
characteristic selective permeability of the intestinal defence 
layer allowing for the passage of macromolecules (patho-
gens, exotoxins and fats) from the lumen into the intestinal 
tissues commonly known as leaky gut; consequently, this will 
lead to colorectal cancer. Therefore, controlling inflammation 

is a crucial step towards the prevention of colorectal cancer 
especially in IBD patients.13

Plants and their active ingredients can have great chemo-
protective potential without any adverse effects.6,14 
Phytochemicals namely alkaloids are among the most com-
mon chemicals investigated in the aspect of chemoprotec-
tion.15 and multidrug resistant.16 Flavonoids as secondary 
metabolites have shown numerous biological activities, anti-
microbial,17 antivirus,18 anti-inflammatory,19 anticancer20 
and antimutagenic actions.21 Notably, pinostrobin, as a natu-
ral flavonoid displayed inhibitory efficacy against numerous 
cancer cells including HeLa S3 and KBvin cells,22 acute leu-
kaemia cells23 and colon cancer.24

Pinostrobin (5-hydroxy-7-methoxy flavanone; PN) is a 
member of flavonoids and an ether (Figure 1) and a dietary 
bioflavonoid isolated from natural resources including plants, 
Pinus strobus,4 Cajanus cajan (L.),25 rhizomes of 
Boesenbergia rotunda26 and finger root (Boesenbergia 
rotunda).27 Numerous biological potentials exhibited by this 
flavanone including antioxidants,28 anti-inflammatory,29 aug-
mentations of inflammatory cytokines (interleukin-1β, 
tumour necrosis factor (TNF)-α)30 and anti-ulcerogenic 
actions.26 Moreover, in vitro, studies revealed outstanding 
inhibitory efficacy of PN against the growth of breast can-
cer,31 cervical,32 lung cancers,33 HL-60 and K562 leukaemia 
cells.34 Moreover, PN also exhibited significant free radical 
quenching and anti-inflammation actions in silver nanoparti-
cle-treated fibroblasts.35 More recently, PN (30 and 60 mg/kg 
of PN) showed significant hepatoprotective potentials in rats, 
which were linked to its positive modulation of antioxidant, 
immunohistochemical and inflammatory pathways.36 Despite 
numerous literature data on PN, however, it is in vivo, cyto-
toxicity, and underlying mechanisms are yet to be found.

Herein, we rationally designed the current experiment to 
evaluate the chemoprotective potentials of PN in AOM-
induced oxidative stress-mediated colorectal cancer in rats. 
Here we studied the in vivo gross morphology, colonic histo-
pathology, immunohistochemistry, antioxidant enzymatic 
and non-enzymatic, and inflammatory cytokines upon AOM-
induced colorectal cancer in the presence of different dos-
ages of PN.

Figure 1.  The chemical structure of pinostrobin.
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Materials and methods

Chemicals

Azoxymethan (CAS no. 25843-45-2) and pinostrobin were 
bought from Sigma-Aldrich Chemical Co. (USA). Pinostrobin 
was mixed with 10% Tween 20 and delivered to rats in an 
amount of 5 mL/kg in two different doses, 30 and 60 mg/kg.37

Ethics approval for the animal experiment

Animal handling was following the guidelines set by Iraqi 
animal rights and National scientific recommendations for 
laboratory animal experiments.38 The current animal proce-
dure was agreed upon by the Ethics Committee of Cihan 
University-Erbil (BIO/14/10/2022/M.A.A.).

Acute toxicity

The toxicity tests for PN were applied to ensure its safety in 
experimental rats. In all, 15 rats were randomly separated into 
the three cages, group 1 (normal control) received orally 10% 
tween 20; Group 2 administered a low dose (250 mg/kg) of 
PN; Group 3 rats ingested a high dosage (500 mg/kg) of PN 
based on the OECD guideline.39 Rats had no access to food 
prior 24 h of the supplementation. Food was removed for a 
further 3–4 h after PN ingestion and the observational proce-
dure began immediately after treatment and continued for 
14 days for any possible grossly behavioural and physiologi-
cal changes, the incidence of toxic signs (shortness of breath, 

mild tremors, frightened and eye colour), morbidity and mor-
tality (if any). Directly after 2 weeks, rats were given xylazine 
and ketamine before the sacrifice. Blood collection was made 
from intracardial puncture and then serum specimens were 
obtained (centrifuge, LC carousel, Roche, Germany) for bio-
chemical analysis.40 The liver and kidney were also collected 
from rats for the histopathological evaluations.41

Chemoprotection procedure of PN

In all, 30 adult Dawley rats (male) were divided equally into 
five cages (6 rats in each). (a) normal control rats; (b) cancer 
control rats; (c) Reference rats; (d) rats received 5-FU 
(5-fluorouracil); (d and e) rats were supplemented with a low 
(30 mg/kg) and high dose (60 mg/kg) of PN.6

Normal control rats (a) received a saline solution (5 mL/
kg) subcutaneously and group (b–e) rats received two doses 
of 15 mg/kg AOM in 2 weeks by subcutaneous injection. In 
addition, the normal and cancer control rats were given 
orally 15 mg/kg of 10% tween 20 (5 mL/kg); reference con-
trol rats had 5-FU (5-fluorouracil) by intraperitoneal injec-
tion; PN-treated rats received a daily dosage of 30, and 
60 mg/kg of PN by oral gavage for the entire experimental 
period (2 months) (Figure 2). After that, rats were given 
anaesthesia and sacrificed, and the collected colon tissues 
were examined for the degree of ACF formation by different 
histopathological techniques. Colon tissue specimens were 
treated with liquid nitrogen for the homogenization 
process.42

Figure 2.  Schematic timeline of experimental design. Created in Biorender. (A) normal control rats; (B) cancer control rats; (C) 
Reference rats received 5-FU (5-fluorouracil); (D and E) rats were supplemented with 30 and 60 mg/kg PN.
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Evaluation of ACF scores

The experimental rats were given anaesthesia scarification 
and the colon tissues were mixed with cold phosphate-buff-
ered saline. Longitudinal cutting of colon tissues was made 
from the bottom to the rectum. After that, tissues were col-
oured with methylene blue dye (0.2%) for the microscopic 
examination and measurement of ACF degrees. The ACF 
scores were determined for each tissue specimen by estima-
tion of ACF in different microscopic focus.43
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.
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Histology procedure of ACFs

Colon tissue samples were mixed with Buffered formalin 
(10%) as the preparation technique for the machinery tissue 
process (Leica, Germany). After that, tissues were blocked 
with paraffin, and a regular slice of 5 µm was set on slides 
and coloured with haematoxylin and eosin (H&E). The his-
tological examination of stained slides was made using a 
light microscope (Nikon, Japan).14

Immunohistochemistry

The immunohistochemistry of natural products and poten-
tial herbal medicinal was commonly measured by the esti-
mation of augmentation in the expression of Bax (a 
pro-apoptotic factor that roles in the intrinsic mechanism of 
initiating apoptosis) and Bcl-2 (a key role in the apoptotic 
inhibitor of both intrinsic and extrinsic pathways) proteins.44 
Briefly, colon tissues have undergone a process of de-par-
affinization and rehydration, and mixing with 10 mM 
sodium citrate buffer (10 min) for antigen retrieval. The 
temperature of tissue samples was cooled down by Tris-
buffered saline before the antioxidant procedure using an 
ARK peroxidase kit (DAKO Denmark A/S, Glostrup, 
Denmark). The tissue samples were mixed with a peroxi-
dase solution that enables the blockage of endogenous per-
oxidase (5 min). Finally, the colon tissues were dehydrated 
and prepared on slides for the incubation procedure (15 min) 
by biotinylated antibodies versus Bax and Bcl-2 
(Elabscience, USA) and then followed by the addition of the 
streptavidin–HRP. The slide preparation was made by diam-
inobenzidine substrate chromogen and haematoxylin for 
microscopic examination.

Antiradical evaluation of homogenized colon

The colons were put in ice-cold saline for the homogeniza-
tion procedure, using ice-cold phosphate buffer (10% w/v, 
50 mM, pH 7.4), mammalian protease inhibitor and centri-
fuge (30 min at 10,000 g at 4 °C). The supernatant was moved 
into separate tubes and investigated for the antioxidant 

enzymes (CAT, SOD and GPX) and MDA content (kits from 
Elabscience, USA).45

Statistics

The statistical data are shown as mean ± SEM resulting from 
triplicate analysis. The statistical method for the current 
study included one-way analysis (ANOVA, SPSS software, 
Inc. version 27) and Graph Pad prism 9.0 for graph design. 
The current significant value was set at p < 0.05.

Results

Acute toxicity

The current results revealed the safety of PN supplementa-
tion in two different doses, 250 and 500 mg/kg in a 14-day 
trial. The continuous observation has not detected any abnor-
mal features in the physiology or appearance of rats. 
Moreover, physical activity and feed intake were very com-
parable between PN-ingested rats and normal control rats. 
The histological examination showed comparable tissue 
structure of kidney and liver tissues obtained from normal 
control and PN-treated rats (Figure 3). The current outcomes 
suggest that the toxic dosage of PN exceeds 500 mg/kg PN. 
The biochemical evaluation revealed non-significant changes 
in the liver and kidney parameters of normal control and 
PN-treated rats (data not shown but can be provided on 
request).

Number of foci in the colon

The incidence of aberrant crypt foci was found in all rats 
injected with AOM (Table 1 and Figure 4). incidence in the 
colon (proximal and distal parts) was significantly higher in 
cancer control rats (b) compared to rats treated with 5-FU (c) 
or PN (30 and 60 mg/kg) as shown in Table 1. However, 
increased ACF values were detected in the distal colon, 
regardless of different rat ingestions. Rats ingested 60 mg/kg 
(e) had significantly lower foci numbers (in the proximal and 
distal colon) than that of cancer controls but the values were 
not statistically different compared to that of 5-FU-treated 
rats. The inhibition percentage of foci was significantly up-
regulated by PN treatment. Rats fed on a diet supplemented 
with 60 mg/kg PN showed significantly lower total ACF 
(30.7 ± 1) and higher inhibition percentage (63.71%) than 
that (84.6 ± 5 and 0%) of cancer control rats.

Values are means ± SD (n = 12). Means with shared let-
ters indicate non-significant at (p < 0.05). A, normal nega-
tive rats; B, cancer rats treated only with AOM; C, reference 
rats received 35 mg/kg of 5-FU; D and E, rats received 30 
and 60 mg/kg PN. PN, pinostrobin; ACF, aberrant crypt foci; 
crypt multiplicity of ACF: crypt 1 (immature small crypt); 
crypt 2 (semi-mature crypt); crypt 3 (mature crypt); crypt ⩾ 4 
(mature crypts readily become adenoma).
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The outcomes indicate a significant difference in the ACF 
formation between normal and treated rats. Rats had only 
AOM (b) showed numerous foci in both of their colon parts 
with many ACF aggregations compared to other rat-treated 
groups. The PN (60 mg/kg) treatments lead significant reduc-
tion in the ACF values with higher inhibition percentages of 
ACF incidence in different areas of their colon (Figure 4).

Histopathology of AOM-induced foci in colon

The results have shown that AOM induction caused signifi-
cant colon tissue injury represented by glandular dysplasia in 
the submucosal layer featured with inflammatory cells 
(Figure 5). The glandular dysplasia was distorted in many 
rows or grouped near the lumen. The cancer control rats 

Figure 3.  Histology of kidney and liver in acute toxicity test: (a) normal controls received orally 10% Tween 20; (b) rats received orally 
low dose (250 mg/kg) of PN; and (c) rats ingested orally high dose (500 mg/kg) of PN (magnification, 20×). There were no significant 
changes in the structure of liver and kidney tissues between normal control and pinostrobin-treated rats. The kidney tissues showed 
normal glomeruli (yellow arrow) and a sufficient amount of blood vessels (blue arrow). The liver tissues revealed a clear central vein 
(green star), sinusoidal capillaries (grey arrow), Kupffer cell (black arrow) and normal hepatocytes with round nuclei (pink arrow) for all 
experimental rats.
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Table 1.  Effects of PN on the ACF values in experimental rats.

Groups Crypt 1 Crypt 2 Crypt 3 Crypt ⩾ 4 Total ACF Inhibition%

A N/A N/A N/A N/A N/A N/A
B 8.3 ± 1.4b 21.8 ± 2.3c 23.3 ± 3.2b 31.2 ± 1.9c 84.6c 0
C 3.5 ± 1.3a 8.2 ± 2.9a 4.6 ± 1.2a 11.3 ± 1.7a 27.6a 67.37a

D 3.9 ± 1.2a 9.1 ± 1.8b 5.7 ± 1.4b 15.2 ± 3.4b 33.9b 59.92b

E 3.3 ± 1.4a 8.7 ± 1.6a 5.1 ± 1.8a 13.6 ± 1.5b 30.7a 63.71a

Figure 4.  Gross morphology of ACF (white arrow) in colon tissues of rats. (a) normal negative rats; (b) cancer rats treated only 
with AOM; (c) reference rats received 35 mg/kg of 5-FU; (d and e) rats received 30 and 60 mg/kg PN. (Magnification, 10×). The ACF 
incidence was significantly down-regulated in PN-treated rats compared to cancer control rats.
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Figure 5.  Microscopic views of cross-sectioned colonic tissues in rats. (a) Normal controls had clear mucus and goblet cells (yellow 
star), the appearance of normal glands with round nuclei in the basal location in signet cells (orange arrow) away from the lumen (black 
double arrow); (b) cancer control rats received only AOM had marked nuclear atypia (elongated and stratified nucleus) multi-stratified 
layers of cell with nucleus abnormalities (orange arrow) in the lumen filled ACF (green star) and numerous leukocyte infiltration (blue 
arrow); (c) rats treated with 35 mg/kg of 5-FU had an almost same glandular appearance as normal control with round and semi-
elongated nucleus (orange arrow) at the basal location with reduced ACF (green star); (d and e) rats received 30 and 60 mg/kg PN, 
showed fewer multi-layer cells, less nucleus abnormalities (orange arrow) and fewer leukocyte infiltration (blue arrow) compared to 
cancer controls. H&E. (Magnification, 100×).
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experienced increased foci incidence with numerous epithe-
lial cells with dense mucin, pleomorphic nucleus, reduced 
cell polarity, mitotic hyperactivity (hyperchromasia), aniso-
cytosis and absence of goblet cells. Rats treated with PN had 
lower colon damage with atypical epithelial cells with nor-
mal mucin thickness, less nucleus malformation and normal 
mitotic action (Figure 5(e)). Histopathologic detections of 
the colon tumour parts showed significant variability in the 
colon tissue structures for 60 mg/kg PN-treated rats com-
pared to cancer control rats that received AOM + 10% tween 
20 (b).

Immunohistochemistry of colon tissues

The current results showed that cancer control rats had sig-
nificantly lower Bax protein expression (pro-apoptotic fac-
tor), which enhances the spread of tumours across colon 
tissues and the formation of numerous lesions in mucosal and 
submucosal layers (Figure 6(b)). PN treatment caused signifi-
cant up-regulation of Bax proteins represented by a deep 
brown colour (Figure 6(d) and (e)). The Bcl-2 staining tech-
nique is used to assess the level of anti-apoptotic factor (Blc-
2) protein expression, which is considered an important 
inhibitory action on cellular apoptosis, thereby facilitating the 
proliferation of mutagenic cells. AOM treatment leads to dif-
ferent expression of Bcl-2 proteins in the colon tissue with 
higher values for cancer control rats, while the Bcl-2 values 
were significantly down-shifted in PN-treated rats (Figure 7).

Pinostrobin effects on enzymatic and non-
enzymatic

The colonic tissue homogenates evaluations revealed signifi-
cant differences in the antioxidant (SOD, CAT, GPx) and 
MDA contents (Figure 8). In comparison to the normal con-
trol rats (a), the antioxidant levels were lower and MDA con-
centrations were higher in cancer controls (b). In this context, 
the antioxidant enzymes were significantly higher and the 
lipid peroxidation was notably lower in rats who received 
5-FU (c) or 30 and 60 mg/kg (d and e), respectively. 
Moreover, supplementation of rats with 60 mg/kg of PN 
exposed to AOM caused significant up-regulation of SOD, 
CAAT, and a decrease in the MDA concentrations to a point 
that resembles the values of 5-FU-treated rats (c). The out-
come suggests significant inhibitory potentials of PN against 
oxidative stress consequently leading to reduced inflamma-
tory cytokines and inflammation.

Pinostrobin effects on inflammatory cytokines

Inflammatory cytokines are immunological chemicals that 
are released during tissue stress and inflammation. The cur-
rent data revealed significant variables in the pro-inflamma-
tory and anti-inflammatory cytokines in colonic tissues 
homogenates as a result of different treatments. Normal 

control rats (a) showed significantly the lowest values of 
TNF-α and IL-6 and the highest level of IL-10 compared to 
all experimental rats. Cancer control rats (b) that received 
AOM + 10% tween 20 showed statistically the highest num-
ber of pro-inflammatory cytokines (TNF-α and IL-6) and 
lowest anti-inflammatory cytokines (IL-10) in their tissue 
homogenates (Figure 9). PN treatment leads to a positive 
augmentation of inflammatory status in colonic homogen-
ates. Rats fed on a diet supplemented with 30 and 60 mg/kg 
of PN had significantly higher anti-inflammatory cytokines 
and lower inflammatory cytokines with enormous statistical 
variance compared to that of cancer controls (p > 0.0001) as 
shown in Figure 9.

Discussion

Plants and their active ingredients can serve as functional 
food and herbal medicine. However, the first barrier to utiliz-
ing such natural products is the absence of proven scientific 
records on their toxicity and adverse effects. Therefore, our 
study included toxicity evaluation of PN in two different 
doses (250 and 500 mg/kg) to set the acceptable healthy dos-
age for future investigations. PN treatment did not produce 
any toxic signs or behavioural changes in rats even after 
2-week experimental periods. The current data backup of our 
recently published study that revealed the toxic dosage of PN 
exceeds 500 mg/kg.36 Similarly, Patel et al.46 reported non-
toxic and non-genotoxic effects of PN in male Wistar rats 
even at 500 mg/kg dosage.

AOM is a well-known chemical inducer of ACF of the 
large intestine in a two-dose (15 mg/kg body weight, once 
weekly for 2 weeks) regimen by subcutaneous injection. 
AOM was found very effective in the induction of ACF in 
rats’ colons in different chemoprotective trials for potential 
active ingredients and plant extracts.47,48 The current inves-
tigation utilized 15 mg/kg of AOM injection as an inducer 
of colonic ACF along with PN supplementation for 
2 months. Rats ingested only AOM had notable organ 
metastasis revealed as ileocecal lymph nodes and cecum. 
PN treatment leads to a significant reduction in the amount 
and volume of colon ACF. Moreover, PN-treated rats 
showed significantly reduced total ACF and higher inhibi-
tion percentage of ACF incidence than that of cancer con-
trol rats. Previous studies on PN-rich plants, such as the 
ginger family, reported significant inhibitory potentials of 
these plants against AOM-induced adenocarcinoma in rats, 
which were linked with its modulatory actions on various 
cellular processes.49,50

Mucin production is a well-known histological property in 
colorectal cancer. Mucin amount can be used to classify ade-
nocarcinoma into mucinous adenocarcinoma (aggregation of 
the extracellular mucin almost 50% of lesions) and Signet 
ring cell mucinous carcinoma (intracellular and intracyto-
plasmic mucin). Signet carcinoma cells in colon ACF appear 
with other microscopic features at specific rates, and the 
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amount must be indicated in research, as the prognosis is very 
limited.51 The current study detected signet ring cells in a 
typical epithelium of the colon obtained from AOM-treated 
rats. While PN-treated has not develop such cells in their 
colon, which indicates the protective role of PN against 
AOM-induced foci in rat’s colon. Accordingly, scientists 

have shown the chemoprotective potentials of natural prod-
ucts (plant extracts) and significant inhibitory potentials on 
the ACF incidence, which were mainly linked with their phy-
tochemical (flavonoids and phenolic) potentials in the modu-
lation of cellular process and mucin productions in different 
rat models.52

Figure 6.  The immunohistochemical appearance of Bax expression in different colon tissues: (a) normal negative rats; (b) cancer rats 
had reduced Bax proteins and severe mucosal injury; (c) reference rats (35 mg/kg 5-FU) had the highest Bax protein expression; (d and 
e) PN-treated rats (30 and 60 mg/kg PN) showed higher Bax proteins (intense brown colour) with less mucosal damage than that of 
cancer controls. (Magnification, 100×). Values are shown as mean ± SEM (n = 6).
ns: non-significant.
**p < 0.01; ****p < 0.0001.
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The immunohistochemistry of colon tissues is considered 
a convenient effective technique to evaluate the chemopro-
tective effects of natural products. The present study has 
shown the decreased appearance of Bax (A pro-apoptotic 
factor that increases membrane permeability of the mito-
chondria and release of cytochrome c.) and increased 

expression of Bcl-2 (an anti-apoptotic factor that preserves 
outer membrane integrity of the mitochondria) in AOM-
treated rats. Consequently, the imbalance between these two 
protein expressions leads to cellular dysfunctionality and 
changes in the mitochondrial route of apoptosis.53 In this 
context, rats supplemented with PN had significantly higher 

Figure 7.  The immunohistochemical appearance of Blc-2 (B-cell lymphoma-2) protein expression (a), normal negative rats; (b) cancer 
rats had increased Blc-2 proteins expression and severe mucosal injury; (c) reference rats (35 mg/kg 5-FU) had the lowest Blc-2 protein 
expression; (d and e) PN-treated rats (30 and 60 mg/kg PN) showed lower Blc-2 proteins (intense brown colour) with less mucosal 
damage than in the cancer control rats (Magnification, 100×). Values are shown as mean ± SEM (n = 6).
ns, non-significant.
*p < 0.05; ***p < 0.001; ****p <0.0001.
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Bax protein and lower Bcl-2 protein concentrations in their 
colon tissues that could activate pro-apoptotic factors such as 
caspase-9 and caspase-3. Furthermore, histological views of 
colon tissues showed lower proliferation levels with reduced 
values of cells that are out of their normal cycle (index). 
Previous in vitro studies have shown anticancer potentials of 
PN against leukaemia cell lines23 and cancer cells,24 indicat-
ing its potential in the induction of apoptosis, as an outcome 
of elevation in several cells in the G1 phase of the mitotic 
process and the proportion of cells undergoing apoptosis. 
Moreover, researchers have shown that the activation of 

apoptotic factors caspase-8 and caspase-10 (inducers of the 
extrinsic pathway) and caspase-9 (inducers of the intrinsic 
pathway) are engaged in the activation of caspase-3 and 
apoptosis.54 In the present study, AOM-treated rats had 
down-regulated Bax protein and up-surged Bcl-2 protein 
expressions but these effects were reversed when rats dieted 
with PN 30 and 60 mg/kg for 2 months. Accordingly, previ-
ous findings showed significant stimulatory potentials of PN 
in acute leukaemia cells by the augmentation of different 
intrinsic and extrinsic mechanisms via different apoptotic 
factors including pro-apoptotic protein (Bax) and death 
receptor (Fas).27

Free radical production can be induced by a number of 
stress-related disorders and diseases including colon can-
cer. The reactive species can have stimulatory action on the 
inflammatory process and activate the inflammatory cas-
cade, cytokine release, leukocyte infiltration (chemotaxis) 
and oxidative stress in colon tissues.12 To prevent such cir-
cumstances, colon tissues secret endogenous antioxidants 
(SOD, CAT and GPx) that balance the free radicals and 
reduce oxidative damage. However, if the free radical pro-
duction outrates the antioxidant enzyme secretion, as 
occurs during certain disease and non-disease conditions, 
colon tissues become more vulnerable to structural and 
functional irregularities.45 Scientists have found a positive 
correlation between lipid peroxidation and expression of 
preneoplastic lesions, denoting a significant role of ROS in 
carcinogenesis. Oxidative stress is considered a major 
cause related to the increased rate of inflammatory 
responses and it has been correlated with the initiation, 
development and prognosis of inflammatory bowel dis-
ease.55 IBD is a digestive tract disease that mainly affects 
the large intestine and can be originated from genetic and 
oxidative stress (key pathophysiological) risk factors.45 
IBD primarily includes Crohn’s disease and ulcerative coli-
tis, which are similar in terms of originating from immuno-
logic overreaction and different from each other based on 
their involvement in the digestive system.56 Moreover, oxi-
dative stress studies have shown the transformation of sen-
sory cells into neoplastic cells in many IBD cases.57 
Therefore, carcinogenesis in the digestive system (colon) 
includes a sophisticated process that initiates gradually and 
instantly and scientists have repeatedly declared roles of 
oxidative stress in the initiation of colon or colorectal can-
cer in various in vitro and in vivo experiments.58,59 The pre-
sent work revealed significant antioxidant potentials of PN 
represented by up-regulation of SOD and CAT, GPx and 
down-regulation of lipid peroxidation (MDA) level in 
colon tissue homogenates. Accordingly, numerous research-
ers have shown the antiradical potentials of PN in previ-
ously published reports.33,60,61 Moreover, Ijaz et al.29 
reported significant radical quenching activity of PN in 
cadmium-mediated oxidative stress in rats represented by 
an upsurge in the CAT, GSR, SOD and GSH-PX and down-
modulation of MDA levels.

Figure 8.  Pinostrobin effects on antioxidant parameters: (a) 
normal negative rats; (b) cancer rats treated only with AOM; (c) 
reference rats received 35 mg/kg of 5-FU; (d and e) rats received 
30 and 60 mg/kg PN. Values are shown as mean ± SEM (n = 6).
ns: non-significant.
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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TNF-α is a well-documented pro-inflammatory cytokine 
that is released from monocytes and macrophages and is 
commonly secreted during the early stages of acute and 
chronic inflammatory diseases (colon cancer). The increased 
production of TNF-α initiates the inflammatory cascade by 
enhancing the release of IL-1, IL-6 and IL-8 cytokines.62,63 
Scientists have revealed that the appearance of TNF-α dur-
ing inflammation has relied on the stimulation of the NF-κB 
mechanism. The colon tissues exposed to increased TNF-α 
and activated NF-κB will have increased appearance of 
inflammatory genes, such as COX-2, lipoxygenase-2, other 
cytokine release, cell adhesion molecules, chemokines and 
iNOS. Moreover, TNF-α has been linked with the initiation, 
promotion and metastasis of most tumour cells.64

NF-κB is a key modulator in the initiation and develop-
ment of immune responses and different inflammatory pro-
cesses. It also facilitates the activation of pro-inflammatory 
cytokines, IL-6, TNF-α and prostaglandins. Previous studies 
have validated AOM as an effective inducer for increased 
production of inflammatory cytokines and other inflamma-
tory mediators.6,53 Moreover, TNF-α along with IL-1β can 
activate the formation of metalloproteinase enzyme and 
modulate COX-2 overproduction during early phases of car-
cinogenesis. Interleukin 6 (pro-inflammatory) can activate 
the JAK/STAT signalling pathways, preventing apoptosis 
and, along with TNF-α, facilitating angiogenesis and cancer 
growth.15 In the current study, cancer control rats received 
AOM + 10% tween 20 had significantly increased IL-6 and 
TNF-α cytokines and notably reduced anti-inflammatory 

cytokine (IL-10) in their blood. Conversely, PN lowered 
immune and inflammatory responses indicated by up-modu-
lation of IL-6 and TNF-α and down-augmentation of IL-10 
cytokines in rats. The pro-inflammatory suppressing effects 
of PN could be correlated with its ring structure, as previ-
ously declared by scientists that the anti-inflammatory 
actions of flavonoids are mainly due to their non-methoxyla-
tion of the 3-OH functional group on the B-ring or methoxy-
lation of the 5- or 7-OH functional groups on the A-ring. 
Similar to our data, researchers have reported the positive 
modulation of inflammatory cytokines (IL-1b, TNF-α, 
NF-kB, inducible NOS and COX-2) by PN supplementa-
tion.29 Moreover, a recent molecular docking study revealed 
that PN can bind to myeloid differentiation factor (MD2) and 
Toll-like receptor 4 (TLR4) without requiring of hydrogen 
bonds. Moreover, researchers declared that PN fits with 
LYS89 in MD2 via carbon hydrogen and many non-covalent 
bonds, thereby inhibiting LPS linkage between MD2 and 
TLR4 and lowering the rate of TLR4/MD2-mediated inflam-
matory responses.65

The current study was performed despite several limita-
tions, including a shortage of animal houses, poor laboratory 
facilities and insufficient instrumental kits.

Conclusion

The outcomes demonstrate the cytoprotective potentials of 
pinostrobin against azoxymethane-induced foci in rats. The 
acute toxicity trial showed the absence of any toxic signs in 

Figure 9.  Pinostrobin effects on inflammatory cytokines: (a) normal negative rats; (b) cancer rats treated only with AOM; (c) reference 
rats received 35 mg/kg of 5-FU; (d and e) rats received 30 and 60 mg/kg PN. Values are shown as mean ± SEM (n = 6).
ns: non-significant.
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.



Ali Abed Wahab et al.	 13

rats exposed to 250 and 500 mg/kg of PN in a 14-day trial. 
PN supplementation for 2 months caused positive augmenta-
tion of the apoptotic cascade, antioxidant enzymes and 
inflammatory cytokines that could be its underlying mecha-
nism of chemoprotective action. The present work could 
serve as the ground knowledge for future investigations on 
the pinostrobin as a potential therapy for colon cancer.
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