

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue

2023-2024

College/ Institute	Erbil Technical Engineering		
Department	Technical Mechanical and Energy Eng.		
Module Name	Theory of Vibration		
Module Code	VIB605		
Degree	Technical Diploma Bachler		
	High Diploma Master PhD		
Semester	6		
Qualification	PhD in Mechanical Engineering		
Scientific Title	Lecturer		
ECTS (Credits)	5		
Module type	Prerequisite Core Assist.		
Weekly hours	4		
Weekly hours (Theory)	(2)hr Class (24)Total hrs Workload		
Weekly hours (Practical)	(2)hr Class (24)Total hrs Workload		
Number of Weeks	12		
Lecturer (Theory)	ABDULRAHMAN BAHADDIN SHAKIR		
E-Mail & Mobile NO.	abdulrahman.shakir@epu.edu.iq, 07504748599		
Lecturer (Practical)	ABDULRAHMAN BAHADDIN SHAKIR		
E-Mail & Mobile NO.	abdulrahman.shakir@epu.edu.iq, 07504748599		
Websites			

Course Book

Course Description	The study of vibration in mechanical systems which is concerned with the oscillatory motions of bodies and the forces associated with them. This course aims to provide you with an understanding of the nature and behavior of dynamic engineering systems and the capability of applying the knowledge of mathematics, science, and engineering to solve engineering vibration problems				
Course objectives	 (Vibration course) aims are acquire the ability to (1) Formulate mathematical models of problems in vibrations using Newton's second law or energy principles, (2) Determine a complete solution to mechanical vibration problems using mathematical or numerical techniques. (3) Determine physical and design interpretations from the results. 				
Student's obligation	 Student's obligation In the Mechanical vibration course is: Attendance in the all lectures. One or more quizzes in each course. Attendance in practical hour in Mechanical vibrations lab. Exam in end of first course Practical exam at end of all courses. 				
Required Learning Materials	 Data show, and PowerPoint program in teaching in computer hall. White board. Web site to upload all lecture notes. 				
	Task				
		lask	Weight (Marks)	Due Week	Relevant Learning Outcome
	F	Paper Review	Weight (Marks)	Due Week	Relevant Learning Outcome
	F	Paper Review Homework	Weight (Marks) 5	Due Week	Relevant Learning Outcome
	F Ass	Paper Review Homework Class Activity	Weight (Marks) 5 2	Due Week	Relevant Learning Outcome
	H Assign	Paper Review Homework Class Activity Report	Weight (Marks) 5 2 5	Due Week	Relevant Learning Outcome
	H Assignmer	Paper Review Homework Class Activity Report Seminar	Weight (Marks) 5 2 5 5 5	Due Week	Relevant Learning Outcome
Evaluation	Assignments	Paper Review Homework Class Activity Report Seminar Essay	Weight (Marks) 5 2 5 5 5	Due Week	Relevant Learning Outcome
Evaluation	Assignments	Paper Review Homework Class Activity Report Seminar Essay Project	Weight (Marks) 5 2 5 5 5 5	Due Week	Relevant Learning Outcome
Evaluation	Assignments Qui	Paper Review Homework Class Activity Report Seminar Essay Project z	Weight (Marks) 5 2 5 5 5 5 	Due Week	Relevant Learning Outcome
Evaluation	P Assignments Qui Lab	Paper Review Homework Class Activity Report Seminar Essay Project z	Weight (Marks) 5 2 5 5 5 5 	Due Week	Relevant Learning Outcome
Evaluation	P Assignments Qui Lab	Paper Review Homework Class Activity Report Seminar Essay Project z term Exam	Weight (Marks) 5 2 5 5 5 5 	Due Week	Relevant Learning Outcome
Evaluation	P Assignments Qui Lab Mic Fina	Paper Review Homework Class Activity Report Seminar Essay Project z o. Iterm Exam al Exam	Weight (Marks) 5 2 5 5 5 5 	Due Week	Relevant Learning Outcome
Evaluation	P Assignments Qui Lab Mic Fina Tot (Vibr	Paper Review Homework Class Activity Report Seminar Essay Project z o. Iterm Exam al Exam al ation course) the st	Weight (Marks) 5 2 5 5 5 5 40 100 25 40 100 tudent will be ab	Due Week	Relevant Learning Outcome

Directorate of Quality Assurance and Accreditation

بەر يو مبەر ايەتى دڭنيايى جۆرى و متمانەبەخشىن

	2. 3. 4. 5. 6. 7. 8.	To solve for the motion and t vibrating single degree of free freely vibrating single degree To construct the governing di for a vibrating mass subjected To decompose any periodic f harmonic motions using Four To solve for the motion and t vibration of a single degree o system. To obtain the complete solut of freedom vibratory system subjected to non-periodic for To solve vibration problems t freedom. To obtain design parameters a complicated vibratory prob	he natural frequer edom undamped r of freedom damped ifferential equation d to an arbitrary for function into a seri ier series analysis. he natural frequer f freedom damped ion for the motion (damped or undar cing functions. hat contains multi and indicate meth lem.	ncy of (1) a freely notion and (2) a ed motion. In and its solution prce. Tes of simple ncy for forced d or undamped of a single degree nped) that is ple degrees of ods of solution for
Course References:	 Key reference: 1. Mechanical Vibrations by Sinirseu S. Rao Fifth Edition 2011 Useful Reference: 1- Mechanical Vibrations theory and applications, S Graham Kelly 2- Theory of Vibration with Application ,W.T. Thomson 			
Course topics (Theor	·y)		Week	Learning Outcome
Basic concepts of vibration	and Ir	troduction to oscillatory	1 7	

Basic concepts of vibration and Introduction to oscillatory motion	1-2	
Free vibration of an undamped single degree of freedom system.	3-4	
Free vibration of a viscously damped single degree of freedom system.	5-6	
Forced vibration of a single degree of freedom system.	7-8	
Two - degree of freedom system.	9-10	
Multi degree of freedom	11-12	

Practical Topics	Week	Learning Outcome
1. SIMPLE PENDULUM	1-3	
2. LONGITUDINAL VIBRATIONS OF HELICAL SPRING	4-6	
3. SPRING IN SERIES & SPRING IN PARALLEL	7-9	
4. TORSIONAL VIBRATION OF SINGLEROTOR SHAFT SYSTEMS	9-12	
5. TORSIONAL OSCILLATIONS OF A SINGLE ROTOR WITH VISCOUS DAMPING	12-14	

Questions Example Design

EXAMPLE :

A vibrating SDOF system consisting of a mass of m = 4.5 kg and a spring with stiffness k = 3.5kN/m is viscously damped so that the ratio of two consecutive amplitudes is 1.0 to 0.85. Determine:

- a) The natural frequency of the un-damped system.
- b) The logarithmic decrement (δ).
- c) The damping ratio.
- d) The damping coefficient.
- e) The damped natural frequency (i.e. ω_D)

Solution:

(a) The undamped natural frequency of the system in radians per second is

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\left(3.5 \text{kN/m} \times \frac{9.81 \text{m/sec}^2}{4.5 \text{ kg}}\right)} = 27.78 \text{rad/sec}$$

or in cycles per second

$$f = \frac{\omega}{2\pi} = 4.44$$
cps

(b) The logarithmic decrement is given

$$\delta = \ln \frac{u_1}{u_2} = \ln \frac{1.00}{0.85} = 0.163$$

(c) The damping ratio from equation below is approximately equal to

بەر يو هبەر ايەتى دڭنيايى جۆرى و متمانەبەخشىن

$$\xi = \frac{\delta}{2\pi} = \frac{0.163}{2\pi} = 0.026$$
(d) The damping coefficient is obtained from equations
 $c = \xi c_{cr} = 2 \times 0.026 \sqrt{(4.5 \times 3.5)/9.81} = 6.53$ N. sec/m
(e) The natural frequency of the damped system is given by equation below so that
 $\omega_D = \omega \sqrt{1 - \xi^2}$
 $\omega_D = 27.78 \sqrt{1 - (0.026)^2} = 27.77$ rad/sec

Extra notes:

External Evaluator

This module catalogue is well organised, covered a wide range of assignment methods which makes it sufficient for students' understanding and knowledge.

1- The course objective is quite clear. It meets the standard requirement for engineering competences by international mechanical engineering organisations; for example, Institute of Mechanical Engineers (IMechE) -the UK.

2- The references are up to dated references.

3- All course topics included in this catalogue is essential for further understanding of Mechanical Engineering and practise them during engineering projects.

Hereby, I confirm that this module catalogue is extremely useful and sufficient in terms of scope and quality for the third-year students in the Department of Mechanical and Energy Engineering at Erbil Polytechnic University.

Dr. Zhwan Dilshad Ibrahim 05/06/2023