زانكوّى يوّليتهكنيكى ههوليّر ERBIL POLTTECHNIC UNIVERSTTY Ministry of Higher Education and Scientific Research
Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2022-2023

College/ Institute	Erbil Technology College
Department	Construction and Material Technology Engineering (C\&MTE)
Module Name	INTRODUCTION TO FLUID MECHANICS
Module Code	IFM 364
Degree	Technical Diploma \square Bachelor \qquad High Diploma \square Master \square PhD \square
Semester	Semester 6
Qualification	Ph.D. in Civil/Environmental Engineering
Scientific Title	Assistant Professor
ECTS (Credits)	6
Module type	Prerequisite \square Core \mathbf{x} Assist.
Weekly hours	4 hrs .
Weekly hours (Theory)	(2)hr Class (2)Total hrs Workload
Weekly hours (Practical)	(2)hr Class (4) Total hrs Workload
Number of Weeks	16
Lecturer (Theory)	Assistant Professor Dr.Abdulfattah Ahmad Amin
E-Mail \& Mobile NO.	/
Lecturer (Practical)	Assistant Professor Dr.Abdulfattah Ahmad Amin
E-Mail \& Mobile NO.	abdulfattah.amin@epu.edu.iq
Websites	/

Corse Description

Course objectives

Student's obligation

Required Learning Materials

Fluid mechanics is the sub discipline of continuum mechanics that studies fluids, that is, liquids and gases. It can be further subdivided into fluid statics, the study of fluids at rest, and fluid dynamics, the study of fluids in motion. Fluids are composed of molecules that collide with one another and solid objects. The continuum assumption, however, considers fluids to be continuous. That is, properties such as density, pressure, temperature, and velocity are taken to be well-defined at infinitely small points, and are assumed to vary continuously from one point to another. Fluid static's and forces on submerged bodies Introduction to kinematics of fluid flow. Energy, continuity and momentum equations. Navier-Stokes equations. Viscous flow through closed conduits. Fundamentals of boundary layer analysis. Dimensional analysis. Potential flow. Introduction to hydraulic machinery.

The general objectives of this module are:

The objective of this course is developing an understanding of fluid dynamics in aerospace engineering as well as a variety of other fields. Learn to use control volume analysis to develop basic equations and to solve problems. Understand and use differential equations to determine pressure and velocity variations in internal and external flows. Understand the concept of viscosity and where viscosity is important in real flows. Learn to use equations in combination with experimental data to determine losses in flow systems. Learn to use dimensional analysis to design physical or numerical experiments and to apply dynamic similarity.
Mechanics can be seen as the prime, and even as the original, discipline of physics. It is a huge body of knowledge about the natural world. It also constitutes a central part of technology.
To pass this module the students should attend all lectures and complete all tests, exams and assignments.

- Attendance of students to the lectures.
- Conducting assignments.
- Conducting seminars.
- Conducting presentation.
- Conducting laboratory reports.
- Conducting exams (Theoretical and Laboratory).

Forms of teaching
Oral presentations lectures, Group discussions, Seminars, Problem-solving based learning, Project based learning.

- Theoretical are prepared in the form of PowerPoint presentation by using data show.
- Tutorials are prepared in the form of PowerPoint presentation by using data show.
- Using white board to explain examples and offer more details.

	Task		Weight (Marks)	Due Week	Relevant Learning Outcome
	Paper Review		1		
		Homework	6	1-12	Improve to solving problems
		Class Activity	6	1-12	To analyze and solve fluid mechanics problems
Evaluation		Report	10		To learn how to write technical reports
		Seminar	10	1-12	Improve the ability of presentation
		Essay	1		
		Project	/	1-12	
	Quiz		8	1-12	
	Lab.		1		
	Midter	Exam	20	1-12	
	Final E		40	1-12	
	Total		100		
Specific learning outcome:		successful comp to: lectures are di o hours will and handouts f the topics. Th nd/or power p part of the week ry. The practi mitting weekly dor the stu al times. Collab or team working	of this n on four dicated f en to the be assist lides duri two hours me let the oratory rep for ques with oth	ule the kly hour heoreti udents by prese the lect practic dents w t. Disc at th to solve	arner will be Mainly, the principles. ontaining the tations using re time. The time in fluid ork in groups ssion time is eoretical and problems by

Course References:	Lecture notes. - Munson, P., R., Okiishi T., H., Huebsch, W., W., Rothmayer, A., P., (2013). Fundamentals of Fluid Mechanics, 7th ed. Jefferson City. John Wiley \& Sons Inc. Cengel , Y., A., Cimbala J., M., (2006). Fluid Mechanics, Fundamentals and Applications. New York. McGRAWHILL. - White, F., M., (2002). Fluid Mechanics, 5th edn. New York. McGRAW-HILL. - John K. Vennard Elementary of Fluid Mechanics. - Marcel Esudier, Engineering Fluid Mechanics. - Egon Krause, Fluid mechanics. - Robert W. Fox "Introduction to Fluid Mechanics" (2004), 6th ed. John Wily and Sons INC. .		
Course topics (Theory)		Week	Learning Outcome
Introduction, System of units, primary and secondary units, an introduction to fluid mechanics, important laws (Newton's Laws included).		Week 1	
Scalars and Vectors, vector sums, laws of parallelogram and rectangular, force components and force system.		Week 2	
Moments and equilibrium.		Week 3	
Centroid and center of gravity.		Week 4	
Moment of inertia area.		Week 5	
Fluids: liquids and gases.		Week 6	
Midterm Examination		Week 7	
Midterm Examination		Week 8	
Pressure, pressure gages, manometers and mechanical gages.		Week 9	
Static pressure, Buoyancy and Archimedes statement.		Week 10	
Bernoulli's equation, Fluid flow continuity.		Week 11	
Laminar and turbulent flows, Flow in pipes friction factor.		Week 12	
Pressure drop Moody diagram, Water pumps, pump characteristics, serial and parallel pumps.		Week 13	

Flow in open channels.	Week 14	
Final Examination	Week 15	
Final Examination	Week 16	
Practical Topics	Week	Learning Outcome
Density of Liquids.	1	
Viscosity.	2	
Bourdon gauge.	3	
Centre of pressure.	4	
Rotameter	5	
Flow measurement apparatus (Venturi-meter).	6	
Midterm Examination	Week 7	
Midterm Examination 8		
Flow measurement apparatus (Orifice-meter).	10	
Flow measurement apparatus (Orifice-meter).	11	
Pressure drops over flow measurement apparatus (head loss).	12	
Pressure drops over flow measurement apparatus (head loss).	13	
Friction loss apparatus (head loss).	14	
Pressure drops over flow measurement apparatus (head loss).	Week 15	
Final Examination		
Final Examination	Week 16	
Examinations (question design):		
The following is an example of the examination and its answer:		

Ministry of Higher Education \& Scientific Research Erbil Polytechnic University Erbil Technology College.
Dept. of Petroleum Technology

Academic Year: 2017 - 2018
Final Exam-1 ${ }^{\text {st }}$ Attempt

Stage: First (MORNING) Subject: Fluid Mechanics (Theo.) Time: 2 hours
Date: 05 / 06 /2018 Tuesday Code: FLM 205
$Q_{1 / a}$ - Fill the symbol, scalars, unit, factor and vectors columns with necessary information?

$\#$	Secondary Units	Symbol	Unit
$\mathbf{1}$	Density		
2	Viscosity		
	Prefix	Symbol	Factor
3	Tera		
		Scalars	Vectors
4	Temperature		
5	Velocity		

b - Determine the resultant and its angle of the three forces acting on the bracket shown in Fig.1?

15 Marks

Fig. 1

$Q_{2} /$ Determine the coordinates of the centroid of the shown shaded area below in
Fig. 2?

```
2 5 \text { Marks}
```

Fig. 2

$Q_{3} /$

a - Determine the specific weight, density and specific gravity of a liquid that occupies a volume of 210 lit. , and weighs 179 kg . Will this fluid float on the surface of an oil of specific gravity (0.8)? Provide results in SI units?
b-A fluid moves along length 0.080 m with velocity $35 \mathrm{~m} / \mathrm{s}$ and has shearing stress of $0.45 \mathrm{~N} / \mathrm{m}^{2}$, what are the dynamic viscosity (μ) of the liquid and the kinematic viscosity (v) ?

Q_{4} / What diameter of clean glass tubing is required so that the rise of water at $20^{\circ} \mathrm{C}$ in a tube due to a capillary action is less than 1.0 mm if you know the value of surface tension ($\sigma=0.0728 \mathrm{~N} / \mathrm{m}$) for water at $20^{\circ} \mathrm{C}$ and γ water $=9.789 \mathrm{KN} / \mathrm{m}^{3}$?

25 Marks
Q_{5} / a - Calculate the change in water pressure (D from the surface of water to the depth of 30 feet)?
b - A water-filled U-tube manometer is used to measure the pressure inside a tank that contains air shown in Fig.3. The water level in the Utube on the side that connects to the tank is 5 ft above the base of the tank. The water level in the other side of the U-tube (which is open to the atmosphere) is $\mathbf{2 ~ f t ~ a b o v e ~ t h e ~ b a s e , ~ D e t e r m i n e ~ t h e ~ p r e s s u r e ~ w i t h i n ~}$ the tank use γ water $=\mathbf{6 2 . 4} \mathbf{~ l b /} \mathrm{ft}^{3}$?
(SOTE: - ANSWER ONLY FOUR (4) QUESTIONS

This Course catalogue has been prepared by:

Assistant Professor Dr. Abdulafattah Ahmed Amin.

- External Evaluator:

Assist. Prof. Mr.Basil Younis Mustaffa

Q1-b:-		
$\begin{aligned} F_{R x} & \sum F_{x} \\ F_{R y} & =\sum F_{y} \\ F_{R x} & =15 \times 0.6427+36 \times 0.866-26 \times 0.923 \\ F_{R y} & =F_{1} \cos 40^{0}+F_{3} \cos 30^{0}+\left[-F_{2}\left(\frac{12}{13}\right)\right] \\ F_{R y} & =15 \times 0.766-36 \times 0.5+26 \times 0.384 \end{aligned}$		

EXAMPLE (continued)

$$
F_{R}=\sqrt{F_{R x}^{2}+F_{R y}^{2}}=\sqrt{(16.82 K N)^{2}+(3.49 K N)^{2}}=17.2 \mathrm{KN}
$$

$$
\phi=\operatorname{Tan}^{-1}\left[\frac{F_{R y}}{F_{R x}}\right]=\frac{3.49 \mathrm{KN}}{16.82 \mathrm{KN}}=11.7^{0}
$$

Q2:-

Solution:

1. This body can be divided into the following pieces: rectangle (a) + triangle (b) + quarter circular (c) semicircular area (d)

Steps 2 \& 3: Make up and fill the table using parts a, b, c , and d.

Segment	Area A $\left(\mathrm{in}^{2}\right)$	$\tilde{\mathrm{x}}$ (in)	$\tilde{\mathrm{y}}$ (in)	$\mathrm{A} \tilde{\mathrm{x}}$ $\left(\mathrm{in}^{3}\right)$	$\mathrm{A} \tilde{\mathrm{y}}$ $\left(\mathrm{in}^{3}\right)$
Rectangle	18	3	1.5	54	27
Triangle	4.5	7	1	31.5	4.5
Q. Circle Semi-Circle	$9 \pi / 4$ $-\pi / 2$	$4(3) /(3 \pi)$ 0	$4(3) /(3 \pi)$ $4(1) /(3 \pi)$	-9 0	$-2 / 3$ Σ Σ

EXAMPLE

(continued)

4. Now use the table data and these formulas to find the coordinates of the centroid.

$$
\begin{aligned}
& \overline{\mathrm{x}}=(\Sigma \widetilde{\mathrm{x}} \mathrm{~A}) /(\Sigma \mathrm{A})=76.5 \mathrm{in}^{3} / 28.0 \mathrm{in}^{2}=2.73 \mathrm{in} \\
& \overline{\mathrm{y}}=(\Sigma \tilde{\mathrm{y}} \mathrm{~A}) /(\Sigma \mathrm{A})=39.83 \mathrm{in}^{3} / 28.0 \mathrm{in}^{2}=1.42 \mathrm{in}
\end{aligned}
$$

03-a:-

Solution:

Density $(\rho): \frac{178 \times 1000}{200}=890 \mathrm{~kg} / \mathrm{m}^{3}$.
Specilic weight $(\gamma): \frac{178 \times 9.81 \times 1000}{200}=8730.9 \mathrm{~N} / \mathrm{m}^{3}$.
Specific gravity (S.G.): $\frac{890}{1000}=0.89>0.80$
\therefore This fluid will not float on the surface of an oil.

Q3-b:-

Solution:

Given: Shear velocity $\mathbf{u}=30 \mathrm{~m} / \mathrm{s}$, length $\mathbf{y}=0.075 \mathrm{~m}$, shearing stress $\tau=$ $0.4 \mathrm{~N} / \mathrm{m}^{2}$. The shearing stress is given by:
$\tau=\mu . \mathrm{u} / \mathrm{d}$
$\mu=\tau . d / u \mid$

1. $\mu=0.4 \frac{N}{m^{2}} \times \frac{0.075 m}{30 \frac{m}{s}} \longrightarrow \mu=0.001 \underline{\mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}}$ or Pa.s (dynami viscosity)

